Metamath Proof Explorer


Theorem efmndov

Description: The value of the group operation of the monoid of endofunctions on A . (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndtset.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndplusg.b B = Base G
efmndplusg.p + ˙ = + G
Assertion efmndov X B Y B X + ˙ Y = X Y

Proof

Step Hyp Ref Expression
1 efmndtset.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndplusg.b B = Base G
3 efmndplusg.p + ˙ = + G
4 coexg X B Y B X Y V
5 coeq1 f = X f g = X g
6 coeq2 g = Y X g = X Y
7 1 2 3 efmndplusg + ˙ = f B , g B f g
8 5 6 7 ovmpog X B Y B X Y V X + ˙ Y = X Y
9 4 8 mpd3an3 X B Y B X + ˙ Y = X Y