Metamath Proof Explorer


Theorem efmndsgrp

Description: The monoid of endofunctions on a class A is a semigroup. (Contributed by AV, 28-Jan-2024)

Ref Expression
Hypothesis efmndmgm.g G = EndoFMnd A
Assertion efmndsgrp G Smgrp

Proof

Step Hyp Ref Expression
1 efmndmgm.g G = EndoFMnd A
2 1 efmndmgm G Mgm
3 eqid Base G = Base G
4 eqid + G = + G
5 1 3 4 efmndcl x Base G y Base G x + G y Base G
6 1 3 4 efmndov x Base G y Base G x + G y = x y
7 5 6 symggrplem f Base G g Base G h Base G f + G g + G h = f + G g + G h
8 7 rgen3 f Base G g Base G h Base G f + G g + G h = f + G g + G h
9 3 4 issgrp G Smgrp G Mgm f Base G g Base G h Base G f + G g + G h = f + G g + G h
10 2 8 9 mpbir2an G Smgrp