Metamath Proof Explorer


Theorem efmul2picn

Description: Multiplying by (i x. ( 2 x. pi ) ) and taking the exponential preserves continuity. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypothesis efmul2picn.1 φ x A B : A cn
Assertion efmul2picn φ x A e i 2 π B : A cn

Proof

Step Hyp Ref Expression
1 efmul2picn.1 φ x A B : A cn
2 efcn exp : cn
3 2 a1i φ exp : cn
4 ax-icn i
5 2cn 2
6 picn π
7 5 6 mulcli 2 π
8 4 7 mulcli i 2 π
9 8 a1i φ i 2 π
10 cncfrss x A B : A cn A
11 1 10 syl φ A
12 ssidd φ
13 cncfmptc i 2 π A x A i 2 π : A cn
14 9 11 12 13 syl3anc φ x A i 2 π : A cn
15 14 1 mulcncf φ x A i 2 π B : A cn
16 3 15 cncfmpt1f φ x A e i 2 π B : A cn