Metamath Proof Explorer


Theorem efne0

Description: The exponential of a complex number is nonzero. Corollary 15-4.3 of Gleason p. 309. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion efne0 A e A 0

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 0
2 oveq1 e A = 0 e A e A = 0 e A
3 efcan A e A e A = 1
4 negcl A A
5 efcl A e A
6 4 5 syl A e A
7 6 mul02d A 0 e A = 0
8 3 7 eqeq12d A e A e A = 0 e A 1 = 0
9 2 8 syl5ib A e A = 0 1 = 0
10 9 necon3d A 1 0 e A 0
11 1 10 mpi A e A 0