Metamath Proof Explorer


Theorem efneg

Description: The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion efneg A e A = 1 e A

Proof

Step Hyp Ref Expression
1 efcl A e A
2 negcl A A
3 efcl A e A
4 2 3 syl A e A
5 efne0 A e A 0
6 efcan A e A e A = 1
7 1 4 5 6 mvllmuld A e A = 1 e A