Step |
Hyp |
Ref |
Expression |
1 |
|
efnnfsumcl.1 |
|
2 |
|
efnnfsumcl.2 |
|
3 |
|
efnnfsumcl.3 |
|
4 |
|
ssrab2 |
|
5 |
|
ax-resscn |
|
6 |
4 5
|
sstri |
|
7 |
6
|
a1i |
|
8 |
|
fveq2 |
|
9 |
8
|
eleq1d |
|
10 |
9
|
elrab |
|
11 |
|
fveq2 |
|
12 |
11
|
eleq1d |
|
13 |
12
|
elrab |
|
14 |
|
fveq2 |
|
15 |
14
|
eleq1d |
|
16 |
|
simpll |
|
17 |
|
simprl |
|
18 |
16 17
|
readdcld |
|
19 |
16
|
recnd |
|
20 |
17
|
recnd |
|
21 |
|
efadd |
|
22 |
19 20 21
|
syl2anc |
|
23 |
|
nnmulcl |
|
24 |
23
|
ad2ant2l |
|
25 |
22 24
|
eqeltrd |
|
26 |
15 18 25
|
elrabd |
|
27 |
10 13 26
|
syl2anb |
|
28 |
27
|
adantl |
|
29 |
|
fveq2 |
|
30 |
29
|
eleq1d |
|
31 |
30 2 3
|
elrabd |
|
32 |
|
0re |
|
33 |
|
1nn |
|
34 |
|
fveq2 |
|
35 |
|
ef0 |
|
36 |
34 35
|
eqtrdi |
|
37 |
36
|
eleq1d |
|
38 |
37
|
elrab |
|
39 |
32 33 38
|
mpbir2an |
|
40 |
39
|
a1i |
|
41 |
7 28 1 31 40
|
fsumcllem |
|
42 |
|
fveq2 |
|
43 |
42
|
eleq1d |
|
44 |
43
|
elrab |
|
45 |
44
|
simprbi |
|
46 |
41 45
|
syl |
|