Metamath Proof Explorer


Theorem efper

Description: The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion efper A K e A + i 2 π K = e A

Proof

Step Hyp Ref Expression
1 ax-icn i
2 2cn 2
3 picn π
4 2 3 mulcli 2 π
5 1 4 mulcli i 2 π
6 zcn K K
7 mulcl i 2 π K i 2 π K
8 5 6 7 sylancr K i 2 π K
9 efadd A i 2 π K e A + i 2 π K = e A e i 2 π K
10 8 9 sylan2 A K e A + i 2 π K = e A e i 2 π K
11 ef2kpi K e i 2 π K = 1
12 11 oveq2d K e A e i 2 π K = e A 1
13 efcl A e A
14 13 mulid1d A e A 1 = e A
15 12 14 sylan9eqr A K e A e i 2 π K = e A
16 10 15 eqtrd A K e A + i 2 π K = e A