Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
efrn2lp
Next ⟩
epse
Metamath Proof Explorer
Ascii
Unicode
Theorem
efrn2lp
Description:
A well-founded class contains no 2-cycle loops.
(Contributed by
NM
, 19-Apr-1994)
Ref
Expression
Assertion
efrn2lp
⊢
E
Fr
A
∧
B
∈
A
∧
C
∈
A
→
¬
B
∈
C
∧
C
∈
B
Proof
Step
Hyp
Ref
Expression
1
fr2nr
⊢
E
Fr
A
∧
B
∈
A
∧
C
∈
A
→
¬
B
E
C
∧
C
E
B
2
epelg
⊢
C
∈
A
→
B
E
C
↔
B
∈
C
3
epelg
⊢
B
∈
A
→
C
E
B
↔
C
∈
B
4
2
3
bi2anan9r
⊢
B
∈
A
∧
C
∈
A
→
B
E
C
∧
C
E
B
↔
B
∈
C
∧
C
∈
B
5
4
adantl
⊢
E
Fr
A
∧
B
∈
A
∧
C
∈
A
→
B
E
C
∧
C
E
B
↔
B
∈
C
∧
C
∈
B
6
1
5
mtbid
⊢
E
Fr
A
∧
B
∈
A
∧
C
∈
A
→
¬
B
∈
C
∧
C
∈
B