Metamath Proof Explorer


Theorem efrn2lp

Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994)

Ref Expression
Assertion efrn2lp E Fr A B A C A ¬ B C C B

Proof

Step Hyp Ref Expression
1 fr2nr E Fr A B A C A ¬ B E C C E B
2 epelg C A B E C B C
3 epelg B A C E B C B
4 2 3 bi2anan9r B A C A B E C C E B B C C B
5 4 adantl E Fr A B A C A B E C C E B B C C B
6 1 5 mtbid E Fr A B A C A ¬ B C C B