Metamath Proof Explorer


Theorem efsub

Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion efsub A B e A B = e A e B

Proof

Step Hyp Ref Expression
1 efcl A e A
2 efcl B e B
3 efne0 B e B 0
4 divrec e A e B e B 0 e A e B = e A 1 e B
5 1 2 3 4 syl3an A B B e A e B = e A 1 e B
6 5 3anidm23 A B e A e B = e A 1 e B
7 efcan B e B e B = 1
8 7 eqcomd B 1 = e B e B
9 negcl B B
10 efcl B e B
11 9 10 syl B e B
12 ax-1cn 1
13 divmul2 1 e B e B e B 0 1 e B = e B 1 = e B e B
14 12 13 mp3an1 e B e B e B 0 1 e B = e B 1 = e B e B
15 11 2 3 14 syl12anc B 1 e B = e B 1 = e B e B
16 8 15 mpbird B 1 e B = e B
17 16 oveq2d B e A 1 e B = e A e B
18 17 adantl A B e A 1 e B = e A e B
19 efadd A B e A + B = e A e B
20 9 19 sylan2 A B e A + B = e A e B
21 18 20 eqtr4d A B e A 1 e B = e A + B
22 negsub A B A + B = A B
23 22 fveq2d A B e A + B = e A B
24 6 21 23 3eqtrrd A B e A B = e A e B