Step |
Hyp |
Ref |
Expression |
1 |
|
efabl.1 |
|
2 |
|
efabl.2 |
|
3 |
|
efabl.3 |
|
4 |
|
efabl.4 |
|
5 |
|
eff |
|
6 |
5
|
a1i |
|
7 |
3
|
adantr |
|
8 |
|
cnfldbas |
|
9 |
8
|
subgss |
|
10 |
4 9
|
syl |
|
11 |
10
|
sselda |
|
12 |
7 11
|
mulcld |
|
13 |
6 12
|
ffvelrnd |
|
14 |
13
|
ralrimiva |
|
15 |
1
|
rnmptss |
|
16 |
14 15
|
syl |
|
17 |
3
|
mul01d |
|
18 |
17
|
fveq2d |
|
19 |
|
ef0 |
|
20 |
18 19
|
eqtrdi |
|
21 |
|
cnfld0 |
|
22 |
21
|
subg0cl |
|
23 |
4 22
|
syl |
|
24 |
|
fvex |
|
25 |
|
oveq2 |
|
26 |
25
|
fveq2d |
|
27 |
1 26
|
elrnmpt1s |
|
28 |
23 24 27
|
sylancl |
|
29 |
20 28
|
eqeltrrd |
|
30 |
1 2 3 4
|
efabl |
|
31 |
|
ablgrp |
|
32 |
30 31
|
syl |
|
33 |
32
|
3ad2ant1 |
|
34 |
|
simp2 |
|
35 |
|
eqid |
|
36 |
35 8
|
mgpbas |
|
37 |
2 36
|
ressbas2 |
|
38 |
16 37
|
syl |
|
39 |
38
|
3ad2ant1 |
|
40 |
34 39
|
eleqtrd |
|
41 |
|
simp3 |
|
42 |
41 39
|
eleqtrd |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
43 44
|
grpcl |
|
46 |
33 40 42 45
|
syl3anc |
|
47 |
4
|
mptexd |
|
48 |
1 47
|
eqeltrid |
|
49 |
|
rnexg |
|
50 |
|
cnfldmul |
|
51 |
35 50
|
mgpplusg |
|
52 |
2 51
|
ressplusg |
|
53 |
48 49 52
|
3syl |
|
54 |
53
|
3ad2ant1 |
|
55 |
54
|
oveqd |
|
56 |
46 55 39
|
3eltr4d |
|
57 |
56
|
3expb |
|
58 |
57
|
ralrimivva |
|
59 |
|
cnring |
|
60 |
35
|
ringmgp |
|
61 |
|
cnfld1 |
|
62 |
35 61
|
ringidval |
|
63 |
36 62 51
|
issubm |
|
64 |
59 60 63
|
mp2b |
|
65 |
16 29 58 64
|
syl3anbrc |
|