Metamath Proof Explorer


Theorem eftabs

Description: The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007)

Ref Expression
Assertion eftabs A K 0 A K K ! = A K K !

Proof

Step Hyp Ref Expression
1 expcl A K 0 A K
2 faccl K 0 K !
3 2 adantl A K 0 K !
4 3 nncnd A K 0 K !
5 facne0 K 0 K ! 0
6 5 adantl A K 0 K ! 0
7 1 4 6 absdivd A K 0 A K K ! = A K K !
8 absexp A K 0 A K = A K
9 3 nnred A K 0 K !
10 3 nnnn0d A K 0 K ! 0
11 10 nn0ge0d A K 0 0 K !
12 9 11 absidd A K 0 K ! = K !
13 8 12 oveq12d A K 0 A K K ! = A K K !
14 7 13 eqtrd A K 0 A K K ! = A K K !