Metamath Proof Explorer


Theorem eftlcvg

Description: The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypothesis eftl.1 F = n 0 A n n !
Assertion eftlcvg A M 0 seq M + F dom

Proof

Step Hyp Ref Expression
1 eftl.1 F = n 0 A n n !
2 1 efcllem A seq 0 + F dom
3 2 adantr A M 0 seq 0 + F dom
4 nn0uz 0 = 0
5 simpr A M 0 M 0
6 1 eftval k 0 F k = A k k !
7 6 adantl A M 0 k 0 F k = A k k !
8 eftcl A k 0 A k k !
9 8 adantlr A M 0 k 0 A k k !
10 7 9 eqeltrd A M 0 k 0 F k
11 4 5 10 iserex A M 0 seq 0 + F dom seq M + F dom
12 3 11 mpbid A M 0 seq M + F dom