Metamath Proof Explorer


Theorem efval

Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion efval A e A = k 0 A k k !

Proof

Step Hyp Ref Expression
1 oveq1 x = A x k = A k
2 1 oveq1d x = A x k k ! = A k k !
3 2 sumeq2sdv x = A k 0 x k k ! = k 0 A k k !
4 df-ef exp = x k 0 x k k !
5 sumex k 0 A k k ! V
6 3 4 5 fvmpt A e A = k 0 A k k !