Metamath Proof Explorer


Theorem efval2

Description: Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypothesis efcvg.1 F = n 0 A n n !
Assertion efval2 A e A = k 0 F k

Proof

Step Hyp Ref Expression
1 efcvg.1 F = n 0 A n n !
2 efval A e A = k 0 A k k !
3 1 eftval k 0 F k = A k k !
4 3 sumeq2i k 0 F k = k 0 A k k !
5 2 4 eqtr4di A e A = k 0 F k