Metamath Proof Explorer


Theorem ege2le3

Description: Lemma for egt2lt3 . (Contributed by NM, 20-Mar-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypotheses erelem1.1 F = n 2 1 2 n
erelem1.2 G = n 0 1 n !
Assertion ege2le3 2 e e 3

Proof

Step Hyp Ref Expression
1 erelem1.1 F = n 2 1 2 n
2 erelem1.2 G = n 0 1 n !
3 nn0uz 0 = 0
4 0nn0 0 0
5 4 a1i 0 0
6 1e0p1 1 = 0 + 1
7 0z 0
8 fveq2 n = 0 n ! = 0 !
9 fac0 0 ! = 1
10 8 9 eqtrdi n = 0 n ! = 1
11 10 oveq2d n = 0 1 n ! = 1 1
12 ax-1cn 1
13 12 div1i 1 1 = 1
14 11 13 eqtrdi n = 0 1 n ! = 1
15 1ex 1 V
16 14 2 15 fvmpt 0 0 G 0 = 1
17 4 16 mp1i G 0 = 1
18 7 17 seq1i seq 0 + G 0 = 1
19 1nn0 1 0
20 fveq2 n = 1 n ! = 1 !
21 fac1 1 ! = 1
22 20 21 eqtrdi n = 1 n ! = 1
23 22 oveq2d n = 1 1 n ! = 1 1
24 23 13 eqtrdi n = 1 1 n ! = 1
25 24 2 15 fvmpt 1 0 G 1 = 1
26 19 25 mp1i G 1 = 1
27 3 5 6 18 26 seqp1d seq 0 + G 1 = 1 + 1
28 df-2 2 = 1 + 1
29 27 28 eqtr4di seq 0 + G 1 = 2
30 19 a1i 1 0
31 nn0z n 0 n
32 1exp n 1 n = 1
33 31 32 syl n 0 1 n = 1
34 33 oveq1d n 0 1 n n ! = 1 n !
35 34 mpteq2ia n 0 1 n n ! = n 0 1 n !
36 2 35 eqtr4i G = n 0 1 n n !
37 36 efcvg 1 seq 0 + G e 1
38 12 37 mp1i seq 0 + G e 1
39 df-e e = e 1
40 38 39 breqtrrdi seq 0 + G e
41 fveq2 n = k n ! = k !
42 41 oveq2d n = k 1 n ! = 1 k !
43 ovex 1 k ! V
44 42 2 43 fvmpt k 0 G k = 1 k !
45 44 adantl k 0 G k = 1 k !
46 faccl k 0 k !
47 46 adantl k 0 k !
48 47 nnrecred k 0 1 k !
49 45 48 eqeltrd k 0 G k
50 47 nnred k 0 k !
51 47 nngt0d k 0 0 < k !
52 1re 1
53 0le1 0 1
54 divge0 1 0 1 k ! 0 < k ! 0 1 k !
55 52 53 54 mpanl12 k ! 0 < k ! 0 1 k !
56 50 51 55 syl2anc k 0 0 1 k !
57 56 45 breqtrrd k 0 0 G k
58 3 30 40 49 57 climserle seq 0 + G 1 e
59 29 58 eqbrtrrd 2 e
60 59 mptru 2 e
61 nnuz = 1
62 1zzd 1
63 49 recnd k 0 G k
64 3 5 63 40 clim2ser seq 0 + 1 + G e seq 0 + G 0
65 0p1e1 0 + 1 = 1
66 seqeq1 0 + 1 = 1 seq 0 + 1 + G = seq 1 + G
67 65 66 ax-mp seq 0 + 1 + G = seq 1 + G
68 18 mptru seq 0 + G 0 = 1
69 68 oveq2i e seq 0 + G 0 = e 1
70 64 67 69 3brtr3g seq 1 + G e 1
71 2cnd 2
72 oveq2 n = k 1 2 n = 1 2 k
73 eqid n 0 1 2 n = n 0 1 2 n
74 ovex 1 2 k V
75 72 73 74 fvmpt k 0 n 0 1 2 n k = 1 2 k
76 75 adantl k 0 n 0 1 2 n k = 1 2 k
77 halfre 1 2
78 simpr k 0 k 0
79 reexpcl 1 2 k 0 1 2 k
80 77 78 79 sylancr k 0 1 2 k
81 80 recnd k 0 1 2 k
82 76 81 eqeltrd k 0 n 0 1 2 n k
83 1lt2 1 < 2
84 2re 2
85 0le2 0 2
86 absid 2 0 2 2 = 2
87 84 85 86 mp2an 2 = 2
88 83 87 breqtrri 1 < 2
89 88 a1i 1 < 2
90 71 89 76 georeclim seq 0 + n 0 1 2 n 2 2 1
91 2m1e1 2 1 = 1
92 91 oveq2i 2 2 1 = 2 1
93 2cn 2
94 93 div1i 2 1 = 2
95 92 94 eqtri 2 2 1 = 2
96 90 95 breqtrdi seq 0 + n 0 1 2 n 2
97 3 5 82 96 clim2ser seq 0 + 1 + n 0 1 2 n 2 seq 0 + n 0 1 2 n 0
98 seqeq1 0 + 1 = 1 seq 0 + 1 + n 0 1 2 n = seq 1 + n 0 1 2 n
99 65 98 ax-mp seq 0 + 1 + n 0 1 2 n = seq 1 + n 0 1 2 n
100 oveq2 n = 0 1 2 n = 1 2 0
101 ovex 1 2 0 V
102 100 73 101 fvmpt 0 0 n 0 1 2 n 0 = 1 2 0
103 4 102 ax-mp n 0 1 2 n 0 = 1 2 0
104 halfcn 1 2
105 exp0 1 2 1 2 0 = 1
106 104 105 ax-mp 1 2 0 = 1
107 103 106 eqtri n 0 1 2 n 0 = 1
108 107 a1i n 0 1 2 n 0 = 1
109 7 108 seq1i seq 0 + n 0 1 2 n 0 = 1
110 109 mptru seq 0 + n 0 1 2 n 0 = 1
111 110 oveq2i 2 seq 0 + n 0 1 2 n 0 = 2 1
112 111 91 eqtri 2 seq 0 + n 0 1 2 n 0 = 1
113 97 99 112 3brtr3g seq 1 + n 0 1 2 n 1
114 nnnn0 k k 0
115 114 82 sylan2 k n 0 1 2 n k
116 72 oveq2d n = k 2 1 2 n = 2 1 2 k
117 ovex 2 1 2 k V
118 116 1 117 fvmpt k F k = 2 1 2 k
119 118 adantl k F k = 2 1 2 k
120 114 76 sylan2 k n 0 1 2 n k = 1 2 k
121 120 oveq2d k 2 n 0 1 2 n k = 2 1 2 k
122 119 121 eqtr4d k F k = 2 n 0 1 2 n k
123 61 62 71 113 115 122 isermulc2 seq 1 + F 2 1
124 2t1e2 2 1 = 2
125 123 124 breqtrdi seq 1 + F 2
126 114 49 sylan2 k G k
127 remulcl 2 1 2 k 2 1 2 k
128 84 80 127 sylancr k 0 2 1 2 k
129 114 128 sylan2 k 2 1 2 k
130 119 129 eqeltrd k F k
131 faclbnd2 k 0 2 k 2 k !
132 131 adantl k 0 2 k 2 k !
133 2nn 2
134 nnexpcl 2 k 0 2 k
135 133 78 134 sylancr k 0 2 k
136 135 nnrpd k 0 2 k +
137 136 rphalfcld k 0 2 k 2 +
138 47 nnrpd k 0 k ! +
139 137 138 lerecd k 0 2 k 2 k ! 1 k ! 1 2 k 2
140 132 139 mpbid k 0 1 k ! 1 2 k 2
141 2cnd k 0 2
142 135 nncnd k 0 2 k
143 135 nnne0d k 0 2 k 0
144 141 142 143 divrecd k 0 2 2 k = 2 1 2 k
145 2ne0 2 0
146 recdiv 2 k 2 k 0 2 2 0 1 2 k 2 = 2 2 k
147 93 145 146 mpanr12 2 k 2 k 0 1 2 k 2 = 2 2 k
148 142 143 147 syl2anc k 0 1 2 k 2 = 2 2 k
149 145 a1i k 0 2 0
150 nn0z k 0 k
151 150 adantl k 0 k
152 141 149 151 exprecd k 0 1 2 k = 1 2 k
153 152 oveq2d k 0 2 1 2 k = 2 1 2 k
154 144 148 153 3eqtr4rd k 0 2 1 2 k = 1 2 k 2
155 140 154 breqtrrd k 0 1 k ! 2 1 2 k
156 114 155 sylan2 k 1 k ! 2 1 2 k
157 114 45 sylan2 k G k = 1 k !
158 156 157 119 3brtr4d k G k F k
159 61 62 70 125 126 130 158 iserle e 1 2
160 159 mptru e 1 2
161 ere e
162 161 52 84 lesubaddi e 1 2 e 2 + 1
163 160 162 mpbi e 2 + 1
164 df-3 3 = 2 + 1
165 163 164 breqtrri e 3
166 60 165 pm3.2i 2 e e 3