Metamath Proof Explorer


Theorem egrsubgr

Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020) (Proof shortened by AV, 17-Dec-2020)

Ref Expression
Assertion egrsubgr G W S U Vtx S Vtx G Fun iEdg S Edg S = S SubGraph G

Proof

Step Hyp Ref Expression
1 simp2 G W S U Vtx S Vtx G Fun iEdg S Edg S = Vtx S Vtx G
2 eqid iEdg S = iEdg S
3 eqid Edg S = Edg S
4 2 3 edg0iedg0 Fun iEdg S Edg S = iEdg S =
5 4 adantl G W S U Fun iEdg S Edg S = iEdg S =
6 res0 iEdg G =
7 6 eqcomi = iEdg G
8 id iEdg S = iEdg S =
9 dmeq iEdg S = dom iEdg S = dom
10 dm0 dom =
11 9 10 eqtrdi iEdg S = dom iEdg S =
12 11 reseq2d iEdg S = iEdg G dom iEdg S = iEdg G
13 7 8 12 3eqtr4a iEdg S = iEdg S = iEdg G dom iEdg S
14 5 13 syl6bi G W S U Fun iEdg S Edg S = iEdg S = iEdg G dom iEdg S
15 14 impr G W S U Fun iEdg S Edg S = iEdg S = iEdg G dom iEdg S
16 15 3adant2 G W S U Vtx S Vtx G Fun iEdg S Edg S = iEdg S = iEdg G dom iEdg S
17 0ss 𝒫 Vtx S
18 sseq1 Edg S = Edg S 𝒫 Vtx S 𝒫 Vtx S
19 17 18 mpbiri Edg S = Edg S 𝒫 Vtx S
20 19 adantl Fun iEdg S Edg S = Edg S 𝒫 Vtx S
21 20 3ad2ant3 G W S U Vtx S Vtx G Fun iEdg S Edg S = Edg S 𝒫 Vtx S
22 eqid Vtx S = Vtx S
23 eqid Vtx G = Vtx G
24 eqid iEdg G = iEdg G
25 22 23 2 24 3 issubgr G W S U S SubGraph G Vtx S Vtx G iEdg S = iEdg G dom iEdg S Edg S 𝒫 Vtx S
26 25 3ad2ant1 G W S U Vtx S Vtx G Fun iEdg S Edg S = S SubGraph G Vtx S Vtx G iEdg S = iEdg G dom iEdg S Edg S 𝒫 Vtx S
27 1 16 21 26 mpbir3and G W S U Vtx S Vtx G Fun iEdg S Edg S = S SubGraph G