Metamath Proof Explorer


Theorem ehl0

Description: The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023)

Ref Expression
Hypotheses ehl0base.e E = 𝔼 hil 0
ehl0base.0 0 ˙ = 0 E
Assertion ehl0 Base E = 0 ˙

Proof

Step Hyp Ref Expression
1 ehl0base.e E = 𝔼 hil 0
2 ehl0base.0 0 ˙ = 0 E
3 1 ehl0base Base E =
4 ovex 1 0 V
5 0nn0 0 0
6 1 ehlval 0 0 E = 1 0
7 5 6 ax-mp E = 1 0
8 fz10 1 0 =
9 8 xpeq1i 1 0 × 0 = × 0
10 9 eqcomi × 0 = 1 0 × 0
11 7 10 rrx0 1 0 V 0 E = × 0
12 4 11 ax-mp 0 E = × 0
13 2 12 eqtri 0 ˙ = × 0
14 0xp × 0 =
15 13 14 eqtri 0 ˙ =
16 15 eqcomi = 0 ˙
17 16 sneqi = 0 ˙
18 3 17 eqtri Base E = 0 ˙