Metamath Proof Explorer


Theorem ehl0base

Description: The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023)

Ref Expression
Hypothesis ehl0base.e E = 𝔼 hil 0
Assertion ehl0base Base E =

Proof

Step Hyp Ref Expression
1 ehl0base.e E = 𝔼 hil 0
2 0nn0 0 0
3 1 ehlbase 0 0 1 0 = Base E
4 3 eqcomd 0 0 Base E = 1 0
5 2 4 ax-mp Base E = 1 0
6 fz10 1 0 =
7 6 oveq2i 1 0 =
8 reex V
9 mapdm0 V =
10 8 9 ax-mp =
11 5 7 10 3eqtri Base E =