Step |
Hyp |
Ref |
Expression |
1 |
|
ehl1eudis.e |
|
2 |
|
ehl1eudis.x |
|
3 |
|
ehl1eudis.d |
|
4 |
|
1nn0 |
|
5 |
|
1z |
|
6 |
|
fzsn |
|
7 |
5 6
|
ax-mp |
|
8 |
7
|
eqcomi |
|
9 |
8 1 2 3
|
ehleudis |
|
10 |
4 9
|
ax-mp |
|
11 |
2
|
eleq2i |
|
12 |
|
reex |
|
13 |
|
snex |
|
14 |
12 13
|
elmap |
|
15 |
11 14
|
bitri |
|
16 |
|
id |
|
17 |
|
1ex |
|
18 |
17
|
snid |
|
19 |
18
|
a1i |
|
20 |
16 19
|
ffvelrnd |
|
21 |
15 20
|
sylbi |
|
22 |
21
|
adantr |
|
23 |
2
|
eleq2i |
|
24 |
12 13
|
elmap |
|
25 |
23 24
|
bitri |
|
26 |
|
id |
|
27 |
18
|
a1i |
|
28 |
26 27
|
ffvelrnd |
|
29 |
25 28
|
sylbi |
|
30 |
29
|
adantl |
|
31 |
22 30
|
resubcld |
|
32 |
31
|
resqcld |
|
33 |
32
|
recnd |
|
34 |
|
fveq2 |
|
35 |
|
fveq2 |
|
36 |
34 35
|
oveq12d |
|
37 |
36
|
oveq1d |
|
38 |
37
|
sumsn |
|
39 |
5 33 38
|
sylancr |
|
40 |
39
|
fveq2d |
|
41 |
31
|
absred |
|
42 |
40 41
|
eqtr4d |
|
43 |
42
|
mpoeq3ia |
|
44 |
10 43
|
eqtri |
|