Metamath Proof Explorer


Theorem ehl1eudisval

Description: The value of the Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses ehl1eudis.e E = 𝔼 hil 1
ehl1eudis.x X = 1
ehl1eudis.d D = dist E
Assertion ehl1eudisval F X G X F D G = F 1 G 1

Proof

Step Hyp Ref Expression
1 ehl1eudis.e E = 𝔼 hil 1
2 ehl1eudis.x X = 1
3 ehl1eudis.d D = dist E
4 fveq1 x = F x 1 = F 1
5 4 fvoveq1d x = F x 1 y 1 = F 1 y 1
6 fveq1 y = G y 1 = G 1
7 6 oveq2d y = G F 1 y 1 = F 1 G 1
8 7 fveq2d y = G F 1 y 1 = F 1 G 1
9 1 2 3 ehl1eudis D = x X , y X x 1 y 1
10 fvex F 1 G 1 V
11 5 8 9 10 ovmpo F X G X F D G = F 1 G 1