Step |
Hyp |
Ref |
Expression |
1 |
|
ehl2eudis.e |
|
2 |
|
ehl2eudis.x |
|
3 |
|
ehl2eudis.d |
|
4 |
|
2nn0 |
|
5 |
|
fz12pr |
|
6 |
5
|
eqcomi |
|
7 |
6 1 2 3
|
ehleudis |
|
8 |
4 7
|
ax-mp |
|
9 |
|
fveq2 |
|
10 |
|
fveq2 |
|
11 |
9 10
|
oveq12d |
|
12 |
11
|
oveq1d |
|
13 |
|
fveq2 |
|
14 |
|
fveq2 |
|
15 |
13 14
|
oveq12d |
|
16 |
15
|
oveq1d |
|
17 |
2
|
eleq2i |
|
18 |
|
reex |
|
19 |
|
prex |
|
20 |
18 19
|
elmap |
|
21 |
17 20
|
bitri |
|
22 |
|
id |
|
23 |
|
1ex |
|
24 |
23
|
prid1 |
|
25 |
24
|
a1i |
|
26 |
22 25
|
ffvelrnd |
|
27 |
21 26
|
sylbi |
|
28 |
27
|
adantr |
|
29 |
2
|
eleq2i |
|
30 |
18 19
|
elmap |
|
31 |
29 30
|
bitri |
|
32 |
|
id |
|
33 |
24
|
a1i |
|
34 |
32 33
|
ffvelrnd |
|
35 |
31 34
|
sylbi |
|
36 |
35
|
adantl |
|
37 |
28 36
|
resubcld |
|
38 |
37
|
resqcld |
|
39 |
38
|
recnd |
|
40 |
|
2ex |
|
41 |
40
|
prid2 |
|
42 |
41
|
a1i |
|
43 |
22 42
|
ffvelrnd |
|
44 |
21 43
|
sylbi |
|
45 |
44
|
adantr |
|
46 |
41
|
a1i |
|
47 |
32 46
|
ffvelrnd |
|
48 |
31 47
|
sylbi |
|
49 |
48
|
adantl |
|
50 |
45 49
|
resubcld |
|
51 |
50
|
resqcld |
|
52 |
51
|
recnd |
|
53 |
39 52
|
jca |
|
54 |
23 40
|
pm3.2i |
|
55 |
54
|
a1i |
|
56 |
|
1ne2 |
|
57 |
56
|
a1i |
|
58 |
12 16 53 55 57
|
sumpr |
|
59 |
58
|
fveq2d |
|
60 |
59
|
mpoeq3ia |
|
61 |
8 60
|
eqtri |
|