Metamath Proof Explorer


Theorem ehl2eudis0lt

Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023)

Ref Expression
Hypotheses ehl2eudisval0.e E = 𝔼 hil 2
ehl2eudisval0.x X = 1 2
ehl2eudisval0.d D = dist E
ehl2eudisval0.0 0 ˙ = 1 2 × 0
Assertion ehl2eudis0lt F X R + F D 0 ˙ < R F 1 2 + F 2 2 < R 2

Proof

Step Hyp Ref Expression
1 ehl2eudisval0.e E = 𝔼 hil 2
2 ehl2eudisval0.x X = 1 2
3 ehl2eudisval0.d D = dist E
4 ehl2eudisval0.0 0 ˙ = 1 2 × 0
5 1 2 3 4 ehl2eudisval0 F X F D 0 ˙ = F 1 2 + F 2 2
6 5 adantr F X R + F D 0 ˙ = F 1 2 + F 2 2
7 6 breq1d F X R + F D 0 ˙ < R F 1 2 + F 2 2 < R
8 eqid 1 2 = 1 2
9 8 2 rrx2pxel F X F 1
10 8 2 rrx2pyel F X F 2
11 eqid F 1 2 + F 2 2 = F 1 2 + F 2 2
12 11 resum2sqcl F 1 F 2 F 1 2 + F 2 2
13 9 10 12 syl2anc F X F 1 2 + F 2 2
14 resqcl F 1 F 1 2
15 resqcl F 2 F 2 2
16 14 15 anim12i F 1 F 2 F 1 2 F 2 2
17 sqge0 F 1 0 F 1 2
18 sqge0 F 2 0 F 2 2
19 17 18 anim12i F 1 F 2 0 F 1 2 0 F 2 2
20 addge0 F 1 2 F 2 2 0 F 1 2 0 F 2 2 0 F 1 2 + F 2 2
21 16 19 20 syl2anc F 1 F 2 0 F 1 2 + F 2 2
22 9 10 21 syl2anc F X 0 F 1 2 + F 2 2
23 13 22 resqrtcld F X F 1 2 + F 2 2
24 13 22 sqrtge0d F X 0 F 1 2 + F 2 2
25 23 24 jca F X F 1 2 + F 2 2 0 F 1 2 + F 2 2
26 rprege0 R + R 0 R
27 lt2sq F 1 2 + F 2 2 0 F 1 2 + F 2 2 R 0 R F 1 2 + F 2 2 < R F 1 2 + F 2 2 2 < R 2
28 25 26 27 syl2an F X R + F 1 2 + F 2 2 < R F 1 2 + F 2 2 2 < R 2
29 13 22 jca F X F 1 2 + F 2 2 0 F 1 2 + F 2 2
30 29 adantr F X R + F 1 2 + F 2 2 0 F 1 2 + F 2 2
31 resqrtth F 1 2 + F 2 2 0 F 1 2 + F 2 2 F 1 2 + F 2 2 2 = F 1 2 + F 2 2
32 30 31 syl F X R + F 1 2 + F 2 2 2 = F 1 2 + F 2 2
33 32 breq1d F X R + F 1 2 + F 2 2 2 < R 2 F 1 2 + F 2 2 < R 2
34 7 28 33 3bitrd F X R + F D 0 ˙ < R F 1 2 + F 2 2 < R 2