Metamath Proof Explorer


Theorem ehlbase

Description: The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ehlval.e E = 𝔼 hil N
Assertion ehlbase N 0 1 N = Base E

Proof

Step Hyp Ref Expression
1 ehlval.e E = 𝔼 hil N
2 rabid2 1 N = f 1 N | finSupp 0 f f 1 N finSupp 0 f
3 elmapi f 1 N f : 1 N
4 fzfid f 1 N 1 N Fin
5 0red f 1 N 0
6 3 4 5 fdmfifsupp f 1 N finSupp 0 f
7 2 6 mprgbir 1 N = f 1 N | finSupp 0 f
8 ovex 1 N V
9 eqid 1 N = 1 N
10 eqid Base 1 N = Base 1 N
11 9 10 rrxbase 1 N V Base 1 N = f 1 N | finSupp 0 f
12 8 11 ax-mp Base 1 N = f 1 N | finSupp 0 f
13 7 12 eqtr4i 1 N = Base 1 N
14 1 ehlval N 0 E = 1 N
15 14 fveq2d N 0 Base E = Base 1 N
16 13 15 eqtr4id N 0 1 N = Base E