| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
eqeq12d |
|
| 4 |
3
|
anbi1d |
|
| 5 |
4
|
anbi1d |
|
| 6 |
|
oveq1 |
|
| 7 |
1
|
oveq1d |
|
| 8 |
6 7
|
eqeq12d |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
8 10
|
bibi12d |
|
| 12 |
5 11
|
imbi12d |
|
| 13 |
|
fveq2 |
|
| 14 |
|
oveq2 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
15
|
anbi2d |
|
| 17 |
16
|
anbi1d |
|
| 18 |
13
|
oveq2d |
|
| 19 |
|
oveq2 |
|
| 20 |
18 19
|
eqeq12d |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
20 22
|
bibi12d |
|
| 24 |
17 23
|
imbi12d |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
26
|
anbi1d |
|
| 28 |
|
neeq1 |
|
| 29 |
27 28
|
anbi12d |
|
| 30 |
29
|
imbi1d |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
32
|
anbi2d |
|
| 34 |
|
fveq2 |
|
| 35 |
34
|
neeq2d |
|
| 36 |
33 35
|
anbi12d |
|
| 37 |
36
|
imbi1d |
|
| 38 |
|
ifhvhv0 |
|
| 39 |
|
ifhvhv0 |
|
| 40 |
|
0cn |
|
| 41 |
40
|
elimel |
|
| 42 |
40
|
elimel |
|
| 43 |
38 39 41 42
|
eigorthi |
|
| 44 |
12 24 30 37 43
|
dedth4h |
|
| 45 |
44
|
imp |
|