Metamath Proof Explorer


Theorem eigposi

Description: A sufficient condition (first conjunct pair, that holds when T is a positive operator) for an eigenvalue B (second conjunct pair) to be nonnegative. Remark (ii) in Hughes p. 137. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypotheses eigpos.1 A
eigpos.2 B
Assertion eigposi A ih T A 0 A ih T A T A = B A A 0 B 0 B

Proof

Step Hyp Ref Expression
1 eigpos.1 A
2 eigpos.2 B
3 oveq2 T A = B A A ih T A = A ih B A
4 3 eleq1d T A = B A A ih T A A ih B A
5 2 1 hvmulcli B A
6 hire A B A A ih B A A ih B A = B A ih A
7 1 5 6 mp2an A ih B A A ih B A = B A ih A
8 oveq1 T A = B A T A ih A = B A ih A
9 3 8 eqeq12d T A = B A A ih T A = T A ih A A ih B A = B A ih A
10 7 9 bitr4id T A = B A A ih B A A ih T A = T A ih A
11 4 10 bitrd T A = B A A ih T A A ih T A = T A ih A
12 11 adantr T A = B A A 0 A ih T A A ih T A = T A ih A
13 1 2 eigrei T A = B A A 0 A ih T A = T A ih A B
14 12 13 bitrd T A = B A A 0 A ih T A B
15 14 biimpac A ih T A T A = B A A 0 B
16 15 adantlr A ih T A 0 A ih T A T A = B A A 0 B
17 hiidrcl A A ih A
18 1 17 mp1i A ih T A 0 A ih T A T A = B A A 0 A ih A
19 ax-his4 A A 0 0 < A ih A
20 1 19 mpan A 0 0 < A ih A
21 20 ad2antll A ih T A 0 A ih T A T A = B A A 0 0 < A ih A
22 18 21 elrpd A ih T A 0 A ih T A T A = B A A 0 A ih A +
23 simplr A ih T A 0 A ih T A T A = B A A 0 0 A ih T A
24 3 ad2antrl A ih T A 0 A ih T A T A = B A A 0 A ih T A = A ih B A
25 his5 B A A A ih B A = B A ih A
26 2 1 1 25 mp3an A ih B A = B A ih A
27 16 cjred A ih T A 0 A ih T A T A = B A A 0 B = B
28 27 oveq1d A ih T A 0 A ih T A T A = B A A 0 B A ih A = B A ih A
29 26 28 syl5eq A ih T A 0 A ih T A T A = B A A 0 A ih B A = B A ih A
30 24 29 eqtrd A ih T A 0 A ih T A T A = B A A 0 A ih T A = B A ih A
31 23 30 breqtrd A ih T A 0 A ih T A T A = B A A 0 0 B A ih A
32 16 22 31 prodge0ld A ih T A 0 A ih T A T A = B A A 0 0 B
33 16 32 jca A ih T A 0 A ih T A T A = B A A 0 B 0 B