Metamath Proof Explorer


Theorem eigre

Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for an eigenvalue B to be real. Generalization of Equation 1.30 of Hughes p. 49. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigre A B T A = B A A 0 A ih T A = T A ih A B

Proof

Step Hyp Ref Expression
1 fveq2 A = if A A 0 T A = T if A A 0
2 oveq2 A = if A A 0 B A = B if A A 0
3 1 2 eqeq12d A = if A A 0 T A = B A T if A A 0 = B if A A 0
4 neeq1 A = if A A 0 A 0 if A A 0 0
5 3 4 anbi12d A = if A A 0 T A = B A A 0 T if A A 0 = B if A A 0 if A A 0 0
6 id A = if A A 0 A = if A A 0
7 6 1 oveq12d A = if A A 0 A ih T A = if A A 0 ih T if A A 0
8 1 6 oveq12d A = if A A 0 T A ih A = T if A A 0 ih if A A 0
9 7 8 eqeq12d A = if A A 0 A ih T A = T A ih A if A A 0 ih T if A A 0 = T if A A 0 ih if A A 0
10 9 bibi1d A = if A A 0 A ih T A = T A ih A B if A A 0 ih T if A A 0 = T if A A 0 ih if A A 0 B
11 5 10 imbi12d A = if A A 0 T A = B A A 0 A ih T A = T A ih A B T if A A 0 = B if A A 0 if A A 0 0 if A A 0 ih T if A A 0 = T if A A 0 ih if A A 0 B
12 oveq1 B = if B B 0 B if A A 0 = if B B 0 if A A 0
13 12 eqeq2d B = if B B 0 T if A A 0 = B if A A 0 T if A A 0 = if B B 0 if A A 0
14 13 anbi1d B = if B B 0 T if A A 0 = B if A A 0 if A A 0 0 T if A A 0 = if B B 0 if A A 0 if A A 0 0
15 eleq1 B = if B B 0 B if B B 0
16 15 bibi2d B = if B B 0 if A A 0 ih T if A A 0 = T if A A 0 ih if A A 0 B if A A 0 ih T if A A 0 = T if A A 0 ih if A A 0 if B B 0
17 14 16 imbi12d B = if B B 0 T if A A 0 = B if A A 0 if A A 0 0 if A A 0 ih T if A A 0 = T if A A 0 ih if A A 0 B T if A A 0 = if B B 0 if A A 0 if A A 0 0 if A A 0 ih T if A A 0 = T if A A 0 ih if A A 0 if B B 0
18 ifhvhv0 if A A 0
19 0cn 0
20 19 elimel if B B 0
21 18 20 eigrei T if A A 0 = if B B 0 if A A 0 if A A 0 0 if A A 0 ih T if A A 0 = T if A A 0 ih if A A 0 if B B 0
22 11 17 21 dedth2h A B T A = B A A 0 A ih T A = T A ih A B
23 22 imp A B T A = B A A 0 A ih T A = T A ih A B