Metamath Proof Explorer


Theorem eigvalcl

Description: An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigvalcl T : A eigvec T eigval T A

Proof

Step Hyp Ref Expression
1 eigvalval T : A eigvec T eigval T A = T A ih A norm A 2
2 eleigveccl T : A eigvec T A
3 ffvelrn T : A T A
4 hicl T A A T A ih A
5 3 4 sylancom T : A T A ih A
6 2 5 syldan T : A eigvec T T A ih A
7 normcl A norm A
8 7 recnd A norm A
9 2 8 syl T : A eigvec T norm A
10 9 sqcld T : A eigvec T norm A 2
11 eleigvec T : A eigvec T A A 0 x T A = x A
12 11 biimpa T : A eigvec T A A 0 x T A = x A
13 sqne0 norm A norm A 2 0 norm A 0
14 8 13 syl A norm A 2 0 norm A 0
15 normne0 A norm A 0 A 0
16 14 15 bitr2d A A 0 norm A 2 0
17 16 biimpa A A 0 norm A 2 0
18 17 3adant3 A A 0 x T A = x A norm A 2 0
19 12 18 syl T : A eigvec T norm A 2 0
20 6 10 19 divcld T : A eigvec T T A ih A norm A 2
21 1 20 eqeltrd T : A eigvec T eigval T A