Metamath Proof Explorer


Theorem eigvalfval

Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigvalfval T : eigval T = x eigvec T T x ih x norm x 2

Proof

Step Hyp Ref Expression
1 fvex eigvec T V
2 1 mptex x eigvec T T x ih x norm x 2 V
3 ax-hilex V
4 fveq2 t = T eigvec t = eigvec T
5 fveq1 t = T t x = T x
6 5 oveq1d t = T t x ih x = T x ih x
7 6 oveq1d t = T t x ih x norm x 2 = T x ih x norm x 2
8 4 7 mpteq12dv t = T x eigvec t t x ih x norm x 2 = x eigvec T T x ih x norm x 2
9 df-eigval eigval = t x eigvec t t x ih x norm x 2
10 2 3 3 8 9 fvmptmap T : eigval T = x eigvec T T x ih x norm x 2