Metamath Proof Explorer


Theorem eigvalval

Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigvalval T : A eigvec T eigval T A = T A ih A norm A 2

Proof

Step Hyp Ref Expression
1 eigvalfval T : eigval T = x eigvec T T x ih x norm x 2
2 1 fveq1d T : eigval T A = x eigvec T T x ih x norm x 2 A
3 fveq2 x = A T x = T A
4 id x = A x = A
5 3 4 oveq12d x = A T x ih x = T A ih A
6 fveq2 x = A norm x = norm A
7 6 oveq1d x = A norm x 2 = norm A 2
8 5 7 oveq12d x = A T x ih x norm x 2 = T A ih A norm A 2
9 eqid x eigvec T T x ih x norm x 2 = x eigvec T T x ih x norm x 2
10 ovex T A ih A norm A 2 V
11 8 9 10 fvmpt A eigvec T x eigvec T T x ih x norm x 2 A = T A ih A norm A 2
12 2 11 sylan9eq T : A eigvec T eigval T A = T A ih A norm A 2