Metamath Proof Explorer


Theorem eigvec1

Description: Property of an eigenvector. (Contributed by NM, 12-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigvec1 T : A eigvec T T A = eigval T A A A 0

Proof

Step Hyp Ref Expression
1 eigvalval T : A eigvec T eigval T A = T A ih A norm A 2
2 1 oveq1d T : A eigvec T eigval T A A = T A ih A norm A 2 A
3 eleigvec2 T : A eigvec T A A 0 T A span A
4 3 biimpa T : A eigvec T A A 0 T A span A
5 normcan A A 0 T A span A T A ih A norm A 2 A = T A
6 4 5 syl T : A eigvec T T A ih A norm A 2 A = T A
7 2 6 eqtr2d T : A eigvec T T A = eigval T A A
8 4 simp2d T : A eigvec T A 0
9 7 8 jca T : A eigvec T T A = eigval T A A A 0