Metamath Proof Explorer


Theorem eigvecval

Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion eigvecval T : eigvec T = x 0 | y T x = y x

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 difexg V 0 V
3 1 2 ax-mp 0 V
4 3 rabex x 0 | y T x = y x V
5 fveq1 t = T t x = T x
6 5 eqeq1d t = T t x = y x T x = y x
7 6 rexbidv t = T y t x = y x y T x = y x
8 7 rabbidv t = T x 0 | y t x = y x = x 0 | y T x = y x
9 df-eigvec eigvec = t x 0 | y t x = y x
10 4 1 1 8 9 fvmptmap T : eigvec T = x 0 | y T x = y x