Metamath Proof Explorer


Theorem eirr

Description: _e is irrational. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion eirr e

Proof

Step Hyp Ref Expression
1 eqid n 0 1 n ! = n 0 1 n !
2 simpll p q e = p q p
3 simplr p q e = p q q
4 simpr p q e = p q e = p q
5 1 2 3 4 eirrlem ¬ p q e = p q
6 5 imnani p q ¬ e = p q
7 6 nrexdv p ¬ q e = p q
8 7 nrex ¬ p q e = p q
9 elq e p q e = p q
10 8 9 mtbir ¬ e
11 10 nelir e