Metamath Proof Explorer


Theorem eirrlem

Description: Lemma for eirr . (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses eirr.1 F = n 0 1 n !
eirr.2 φ P
eirr.3 φ Q
eirr.4 φ e = P Q
Assertion eirrlem ¬ φ

Proof

Step Hyp Ref Expression
1 eirr.1 F = n 0 1 n !
2 eirr.2 φ P
3 eirr.3 φ Q
4 eirr.4 φ e = P Q
5 fzfid φ 0 Q Fin
6 elfznn0 k 0 Q k 0
7 nn0z n 0 n
8 1exp n 1 n = 1
9 7 8 syl n 0 1 n = 1
10 9 oveq1d n 0 1 n n ! = 1 n !
11 10 mpteq2ia n 0 1 n n ! = n 0 1 n !
12 1 11 eqtr4i F = n 0 1 n n !
13 12 eftval k 0 F k = 1 k k !
14 13 adantl φ k 0 F k = 1 k k !
15 ax-1cn 1
16 15 a1i φ 1
17 eftcl 1 k 0 1 k k !
18 16 17 sylan φ k 0 1 k k !
19 14 18 eqeltrd φ k 0 F k
20 6 19 sylan2 φ k 0 Q F k
21 5 20 fsumcl φ k = 0 Q F k
22 nn0uz 0 = 0
23 eqid Q + 1 = Q + 1
24 3 peano2nnd φ Q + 1
25 24 nnnn0d φ Q + 1 0
26 eqidd φ k 0 F k = F k
27 fveq2 n = k n ! = k !
28 27 oveq2d n = k 1 n ! = 1 k !
29 ovex 1 k ! V
30 28 1 29 fvmpt k 0 F k = 1 k !
31 30 adantl φ k 0 F k = 1 k !
32 faccl k 0 k !
33 32 adantl φ k 0 k !
34 33 nnrpd φ k 0 k ! +
35 34 rpreccld φ k 0 1 k ! +
36 31 35 eqeltrd φ k 0 F k +
37 12 efcllem 1 seq 0 + F dom
38 16 37 syl φ seq 0 + F dom
39 22 23 25 26 36 38 isumrpcl φ k Q + 1 F k +
40 39 rpred φ k Q + 1 F k
41 40 recnd φ k Q + 1 F k
42 esum e = k 0 1 k !
43 30 sumeq2i k 0 F k = k 0 1 k !
44 42 43 eqtr4i e = k 0 F k
45 22 23 25 26 19 38 isumsplit φ k 0 F k = k = 0 Q + 1 - 1 F k + k Q + 1 F k
46 44 45 eqtrid φ e = k = 0 Q + 1 - 1 F k + k Q + 1 F k
47 3 nncnd φ Q
48 pncan Q 1 Q + 1 - 1 = Q
49 47 15 48 sylancl φ Q + 1 - 1 = Q
50 49 oveq2d φ 0 Q + 1 - 1 = 0 Q
51 50 sumeq1d φ k = 0 Q + 1 - 1 F k = k = 0 Q F k
52 51 oveq1d φ k = 0 Q + 1 - 1 F k + k Q + 1 F k = k = 0 Q F k + k Q + 1 F k
53 46 52 eqtrd φ e = k = 0 Q F k + k Q + 1 F k
54 21 41 53 mvrladdd φ e k = 0 Q F k = k Q + 1 F k
55 54 oveq2d φ Q ! e k = 0 Q F k = Q ! k Q + 1 F k
56 3 nnnn0d φ Q 0
57 56 faccld φ Q !
58 57 nncnd φ Q !
59 ere e
60 59 recni e
61 60 a1i φ e
62 58 61 21 subdid φ Q ! e k = 0 Q F k = Q ! e Q ! k = 0 Q F k
63 55 62 eqtr3d φ Q ! k Q + 1 F k = Q ! e Q ! k = 0 Q F k
64 4 oveq2d φ Q ! e = Q ! P Q
65 2 zcnd φ P
66 3 nnne0d φ Q 0
67 58 65 47 66 div12d φ Q ! P Q = P Q ! Q
68 64 67 eqtrd φ Q ! e = P Q ! Q
69 3 nnred φ Q
70 69 leidd φ Q Q
71 facdiv Q 0 Q Q Q Q ! Q
72 56 3 70 71 syl3anc φ Q ! Q
73 72 nnzd φ Q ! Q
74 2 73 zmulcld φ P Q ! Q
75 68 74 eqeltrd φ Q ! e
76 5 58 20 fsummulc2 φ Q ! k = 0 Q F k = k = 0 Q Q ! F k
77 6 adantl φ k 0 Q k 0
78 77 30 syl φ k 0 Q F k = 1 k !
79 78 oveq2d φ k 0 Q Q ! F k = Q ! 1 k !
80 58 adantr φ k 0 Q Q !
81 6 33 sylan2 φ k 0 Q k !
82 81 nncnd φ k 0 Q k !
83 facne0 k 0 k ! 0
84 77 83 syl φ k 0 Q k ! 0
85 80 82 84 divrecd φ k 0 Q Q ! k ! = Q ! 1 k !
86 79 85 eqtr4d φ k 0 Q Q ! F k = Q ! k !
87 permnn k 0 Q Q ! k !
88 87 adantl φ k 0 Q Q ! k !
89 86 88 eqeltrd φ k 0 Q Q ! F k
90 89 nnzd φ k 0 Q Q ! F k
91 5 90 fsumzcl φ k = 0 Q Q ! F k
92 76 91 eqeltrd φ Q ! k = 0 Q F k
93 75 92 zsubcld φ Q ! e Q ! k = 0 Q F k
94 63 93 eqeltrd φ Q ! k Q + 1 F k
95 0zd φ 0
96 57 nnrpd φ Q ! +
97 96 39 rpmulcld φ Q ! k Q + 1 F k +
98 97 rpgt0d φ 0 < Q ! k Q + 1 F k
99 24 peano2nnd φ Q + 1 + 1
100 99 nnred φ Q + 1 + 1
101 25 faccld φ Q + 1 !
102 101 24 nnmulcld φ Q + 1 ! Q + 1
103 100 102 nndivred φ Q + 1 + 1 Q + 1 ! Q + 1
104 57 nnrecred φ 1 Q !
105 abs1 1 = 1
106 105 oveq1i 1 n = 1 n
107 106 oveq1i 1 n n ! = 1 n n !
108 107 mpteq2i n 0 1 n n ! = n 0 1 n n !
109 12 108 eqtr4i F = n 0 1 n n !
110 eqid n 0 1 Q + 1 Q + 1 ! 1 Q + 1 + 1 n = n 0 1 Q + 1 Q + 1 ! 1 Q + 1 + 1 n
111 1le1 1 1
112 105 111 eqbrtri 1 1
113 112 a1i φ 1 1
114 12 109 110 24 16 113 eftlub φ k Q + 1 F k 1 Q + 1 Q + 1 + 1 Q + 1 ! Q + 1
115 39 rprege0d φ k Q + 1 F k 0 k Q + 1 F k
116 absid k Q + 1 F k 0 k Q + 1 F k k Q + 1 F k = k Q + 1 F k
117 115 116 syl φ k Q + 1 F k = k Q + 1 F k
118 105 oveq1i 1 Q + 1 = 1 Q + 1
119 24 nnzd φ Q + 1
120 1exp Q + 1 1 Q + 1 = 1
121 119 120 syl φ 1 Q + 1 = 1
122 118 121 eqtrid φ 1 Q + 1 = 1
123 122 oveq1d φ 1 Q + 1 Q + 1 + 1 Q + 1 ! Q + 1 = 1 Q + 1 + 1 Q + 1 ! Q + 1
124 103 recnd φ Q + 1 + 1 Q + 1 ! Q + 1
125 124 mulid2d φ 1 Q + 1 + 1 Q + 1 ! Q + 1 = Q + 1 + 1 Q + 1 ! Q + 1
126 123 125 eqtrd φ 1 Q + 1 Q + 1 + 1 Q + 1 ! Q + 1 = Q + 1 + 1 Q + 1 ! Q + 1
127 114 117 126 3brtr3d φ k Q + 1 F k Q + 1 + 1 Q + 1 ! Q + 1
128 24 nnred φ Q + 1
129 128 128 readdcld φ Q + 1 + Q + 1
130 128 128 remulcld φ Q + 1 Q + 1
131 1red φ 1
132 3 nnge1d φ 1 Q
133 1nn 1
134 nnleltp1 1 Q 1 Q 1 < Q + 1
135 133 3 134 sylancr φ 1 Q 1 < Q + 1
136 132 135 mpbid φ 1 < Q + 1
137 131 128 128 136 ltadd2dd φ Q + 1 + 1 < Q + 1 + Q + 1
138 24 nncnd φ Q + 1
139 138 2timesd φ 2 Q + 1 = Q + 1 + Q + 1
140 df-2 2 = 1 + 1
141 131 69 131 132 leadd1dd φ 1 + 1 Q + 1
142 140 141 eqbrtrid φ 2 Q + 1
143 2re 2
144 143 a1i φ 2
145 24 nngt0d φ 0 < Q + 1
146 lemul1 2 Q + 1 Q + 1 0 < Q + 1 2 Q + 1 2 Q + 1 Q + 1 Q + 1
147 144 128 128 145 146 syl112anc φ 2 Q + 1 2 Q + 1 Q + 1 Q + 1
148 142 147 mpbid φ 2 Q + 1 Q + 1 Q + 1
149 139 148 eqbrtrrd φ Q + 1 + Q + 1 Q + 1 Q + 1
150 100 129 130 137 149 ltletrd φ Q + 1 + 1 < Q + 1 Q + 1
151 facp1 Q 0 Q + 1 ! = Q ! Q + 1
152 56 151 syl φ Q + 1 ! = Q ! Q + 1
153 152 oveq1d φ Q + 1 ! Q ! = Q ! Q + 1 Q !
154 101 nncnd φ Q + 1 !
155 57 nnne0d φ Q ! 0
156 154 58 155 divrecd φ Q + 1 ! Q ! = Q + 1 ! 1 Q !
157 138 58 155 divcan3d φ Q ! Q + 1 Q ! = Q + 1
158 153 156 157 3eqtr3rd φ Q + 1 = Q + 1 ! 1 Q !
159 158 oveq1d φ Q + 1 Q + 1 = Q + 1 ! 1 Q ! Q + 1
160 104 recnd φ 1 Q !
161 154 160 138 mul32d φ Q + 1 ! 1 Q ! Q + 1 = Q + 1 ! Q + 1 1 Q !
162 159 161 eqtrd φ Q + 1 Q + 1 = Q + 1 ! Q + 1 1 Q !
163 150 162 breqtrd φ Q + 1 + 1 < Q + 1 ! Q + 1 1 Q !
164 102 nnred φ Q + 1 ! Q + 1
165 102 nngt0d φ 0 < Q + 1 ! Q + 1
166 ltdivmul Q + 1 + 1 1 Q ! Q + 1 ! Q + 1 0 < Q + 1 ! Q + 1 Q + 1 + 1 Q + 1 ! Q + 1 < 1 Q ! Q + 1 + 1 < Q + 1 ! Q + 1 1 Q !
167 100 104 164 165 166 syl112anc φ Q + 1 + 1 Q + 1 ! Q + 1 < 1 Q ! Q + 1 + 1 < Q + 1 ! Q + 1 1 Q !
168 163 167 mpbird φ Q + 1 + 1 Q + 1 ! Q + 1 < 1 Q !
169 40 103 104 127 168 lelttrd φ k Q + 1 F k < 1 Q !
170 40 131 96 ltmuldiv2d φ Q ! k Q + 1 F k < 1 k Q + 1 F k < 1 Q !
171 169 170 mpbird φ Q ! k Q + 1 F k < 1
172 0p1e1 0 + 1 = 1
173 171 172 breqtrrdi φ Q ! k Q + 1 F k < 0 + 1
174 btwnnz 0 0 < Q ! k Q + 1 F k Q ! k Q + 1 F k < 0 + 1 ¬ Q ! k Q + 1 F k
175 95 98 173 174 syl3anc φ ¬ Q ! k Q + 1 F k
176 94 175 pm2.65i ¬ φ