| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eirr.1 |
|
| 2 |
|
eirr.2 |
|
| 3 |
|
eirr.3 |
|
| 4 |
|
eirr.4 |
|
| 5 |
|
fzfid |
|
| 6 |
|
elfznn0 |
|
| 7 |
|
nn0z |
|
| 8 |
|
1exp |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
oveq1d |
|
| 11 |
10
|
mpteq2ia |
|
| 12 |
1 11
|
eqtr4i |
|
| 13 |
12
|
eftval |
|
| 14 |
13
|
adantl |
|
| 15 |
|
ax-1cn |
|
| 16 |
15
|
a1i |
|
| 17 |
|
eftcl |
|
| 18 |
16 17
|
sylan |
|
| 19 |
14 18
|
eqeltrd |
|
| 20 |
6 19
|
sylan2 |
|
| 21 |
5 20
|
fsumcl |
|
| 22 |
|
nn0uz |
|
| 23 |
|
eqid |
|
| 24 |
3
|
peano2nnd |
|
| 25 |
24
|
nnnn0d |
|
| 26 |
|
eqidd |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
oveq2d |
|
| 29 |
|
ovex |
|
| 30 |
28 1 29
|
fvmpt |
|
| 31 |
30
|
adantl |
|
| 32 |
|
faccl |
|
| 33 |
32
|
adantl |
|
| 34 |
33
|
nnrpd |
|
| 35 |
34
|
rpreccld |
|
| 36 |
31 35
|
eqeltrd |
|
| 37 |
12
|
efcllem |
|
| 38 |
16 37
|
syl |
|
| 39 |
22 23 25 26 36 38
|
isumrpcl |
|
| 40 |
39
|
rpred |
|
| 41 |
40
|
recnd |
|
| 42 |
|
esum |
|
| 43 |
30
|
sumeq2i |
|
| 44 |
42 43
|
eqtr4i |
|
| 45 |
22 23 25 26 19 38
|
isumsplit |
|
| 46 |
44 45
|
eqtrid |
|
| 47 |
3
|
nncnd |
|
| 48 |
|
pncan |
|
| 49 |
47 15 48
|
sylancl |
|
| 50 |
49
|
oveq2d |
|
| 51 |
50
|
sumeq1d |
|
| 52 |
51
|
oveq1d |
|
| 53 |
46 52
|
eqtrd |
|
| 54 |
21 41 53
|
mvrladdd |
|
| 55 |
54
|
oveq2d |
|
| 56 |
3
|
nnnn0d |
|
| 57 |
56
|
faccld |
|
| 58 |
57
|
nncnd |
|
| 59 |
|
ere |
|
| 60 |
59
|
recni |
|
| 61 |
60
|
a1i |
|
| 62 |
58 61 21
|
subdid |
|
| 63 |
55 62
|
eqtr3d |
|
| 64 |
4
|
oveq2d |
|
| 65 |
2
|
zcnd |
|
| 66 |
3
|
nnne0d |
|
| 67 |
58 65 47 66
|
div12d |
|
| 68 |
64 67
|
eqtrd |
|
| 69 |
3
|
nnred |
|
| 70 |
69
|
leidd |
|
| 71 |
|
facdiv |
|
| 72 |
56 3 70 71
|
syl3anc |
|
| 73 |
72
|
nnzd |
|
| 74 |
2 73
|
zmulcld |
|
| 75 |
68 74
|
eqeltrd |
|
| 76 |
5 58 20
|
fsummulc2 |
|
| 77 |
6
|
adantl |
|
| 78 |
77 30
|
syl |
|
| 79 |
78
|
oveq2d |
|
| 80 |
58
|
adantr |
|
| 81 |
6 33
|
sylan2 |
|
| 82 |
81
|
nncnd |
|
| 83 |
|
facne0 |
|
| 84 |
77 83
|
syl |
|
| 85 |
80 82 84
|
divrecd |
|
| 86 |
79 85
|
eqtr4d |
|
| 87 |
|
permnn |
|
| 88 |
87
|
adantl |
|
| 89 |
86 88
|
eqeltrd |
|
| 90 |
89
|
nnzd |
|
| 91 |
5 90
|
fsumzcl |
|
| 92 |
76 91
|
eqeltrd |
|
| 93 |
75 92
|
zsubcld |
|
| 94 |
63 93
|
eqeltrd |
|
| 95 |
|
0zd |
|
| 96 |
57
|
nnrpd |
|
| 97 |
96 39
|
rpmulcld |
|
| 98 |
97
|
rpgt0d |
|
| 99 |
24
|
peano2nnd |
|
| 100 |
99
|
nnred |
|
| 101 |
25
|
faccld |
|
| 102 |
101 24
|
nnmulcld |
|
| 103 |
100 102
|
nndivred |
|
| 104 |
57
|
nnrecred |
|
| 105 |
|
abs1 |
|
| 106 |
105
|
oveq1i |
|
| 107 |
106
|
oveq1i |
|
| 108 |
107
|
mpteq2i |
|
| 109 |
12 108
|
eqtr4i |
|
| 110 |
|
eqid |
|
| 111 |
|
1le1 |
|
| 112 |
105 111
|
eqbrtri |
|
| 113 |
112
|
a1i |
|
| 114 |
12 109 110 24 16 113
|
eftlub |
|
| 115 |
39
|
rprege0d |
|
| 116 |
|
absid |
|
| 117 |
115 116
|
syl |
|
| 118 |
105
|
oveq1i |
|
| 119 |
24
|
nnzd |
|
| 120 |
|
1exp |
|
| 121 |
119 120
|
syl |
|
| 122 |
118 121
|
eqtrid |
|
| 123 |
122
|
oveq1d |
|
| 124 |
103
|
recnd |
|
| 125 |
124
|
mullidd |
|
| 126 |
123 125
|
eqtrd |
|
| 127 |
114 117 126
|
3brtr3d |
|
| 128 |
24
|
nnred |
|
| 129 |
128 128
|
readdcld |
|
| 130 |
128 128
|
remulcld |
|
| 131 |
|
1red |
|
| 132 |
3
|
nnge1d |
|
| 133 |
|
1nn |
|
| 134 |
|
nnleltp1 |
|
| 135 |
133 3 134
|
sylancr |
|
| 136 |
132 135
|
mpbid |
|
| 137 |
131 128 128 136
|
ltadd2dd |
|
| 138 |
24
|
nncnd |
|
| 139 |
138
|
2timesd |
|
| 140 |
|
df-2 |
|
| 141 |
131 69 131 132
|
leadd1dd |
|
| 142 |
140 141
|
eqbrtrid |
|
| 143 |
|
2re |
|
| 144 |
143
|
a1i |
|
| 145 |
24
|
nngt0d |
|
| 146 |
|
lemul1 |
|
| 147 |
144 128 128 145 146
|
syl112anc |
|
| 148 |
142 147
|
mpbid |
|
| 149 |
139 148
|
eqbrtrrd |
|
| 150 |
100 129 130 137 149
|
ltletrd |
|
| 151 |
|
facp1 |
|
| 152 |
56 151
|
syl |
|
| 153 |
152
|
oveq1d |
|
| 154 |
101
|
nncnd |
|
| 155 |
57
|
nnne0d |
|
| 156 |
154 58 155
|
divrecd |
|
| 157 |
138 58 155
|
divcan3d |
|
| 158 |
153 156 157
|
3eqtr3rd |
|
| 159 |
158
|
oveq1d |
|
| 160 |
104
|
recnd |
|
| 161 |
154 160 138
|
mul32d |
|
| 162 |
159 161
|
eqtrd |
|
| 163 |
150 162
|
breqtrd |
|
| 164 |
102
|
nnred |
|
| 165 |
102
|
nngt0d |
|
| 166 |
|
ltdivmul |
|
| 167 |
100 104 164 165 166
|
syl112anc |
|
| 168 |
163 167
|
mpbird |
|
| 169 |
40 103 104 127 168
|
lelttrd |
|
| 170 |
40 131 96
|
ltmuldiv2d |
|
| 171 |
169 170
|
mpbird |
|
| 172 |
|
0p1e1 |
|
| 173 |
171 172
|
breqtrrdi |
|
| 174 |
|
btwnnz |
|
| 175 |
95 98 173 174
|
syl3anc |
|
| 176 |
94 175
|
pm2.65i |
|