Step |
Hyp |
Ref |
Expression |
1 |
|
eirr.1 |
|
2 |
|
eirr.2 |
|
3 |
|
eirr.3 |
|
4 |
|
eirr.4 |
|
5 |
|
fzfid |
|
6 |
|
elfznn0 |
|
7 |
|
nn0z |
|
8 |
|
1exp |
|
9 |
7 8
|
syl |
|
10 |
9
|
oveq1d |
|
11 |
10
|
mpteq2ia |
|
12 |
1 11
|
eqtr4i |
|
13 |
12
|
eftval |
|
14 |
13
|
adantl |
|
15 |
|
ax-1cn |
|
16 |
15
|
a1i |
|
17 |
|
eftcl |
|
18 |
16 17
|
sylan |
|
19 |
14 18
|
eqeltrd |
|
20 |
6 19
|
sylan2 |
|
21 |
5 20
|
fsumcl |
|
22 |
|
nn0uz |
|
23 |
|
eqid |
|
24 |
3
|
peano2nnd |
|
25 |
24
|
nnnn0d |
|
26 |
|
eqidd |
|
27 |
|
fveq2 |
|
28 |
27
|
oveq2d |
|
29 |
|
ovex |
|
30 |
28 1 29
|
fvmpt |
|
31 |
30
|
adantl |
|
32 |
|
faccl |
|
33 |
32
|
adantl |
|
34 |
33
|
nnrpd |
|
35 |
34
|
rpreccld |
|
36 |
31 35
|
eqeltrd |
|
37 |
12
|
efcllem |
|
38 |
16 37
|
syl |
|
39 |
22 23 25 26 36 38
|
isumrpcl |
|
40 |
39
|
rpred |
|
41 |
40
|
recnd |
|
42 |
|
esum |
|
43 |
30
|
sumeq2i |
|
44 |
42 43
|
eqtr4i |
|
45 |
22 23 25 26 19 38
|
isumsplit |
|
46 |
44 45
|
eqtrid |
|
47 |
3
|
nncnd |
|
48 |
|
pncan |
|
49 |
47 15 48
|
sylancl |
|
50 |
49
|
oveq2d |
|
51 |
50
|
sumeq1d |
|
52 |
51
|
oveq1d |
|
53 |
46 52
|
eqtrd |
|
54 |
21 41 53
|
mvrladdd |
|
55 |
54
|
oveq2d |
|
56 |
3
|
nnnn0d |
|
57 |
56
|
faccld |
|
58 |
57
|
nncnd |
|
59 |
|
ere |
|
60 |
59
|
recni |
|
61 |
60
|
a1i |
|
62 |
58 61 21
|
subdid |
|
63 |
55 62
|
eqtr3d |
|
64 |
4
|
oveq2d |
|
65 |
2
|
zcnd |
|
66 |
3
|
nnne0d |
|
67 |
58 65 47 66
|
div12d |
|
68 |
64 67
|
eqtrd |
|
69 |
3
|
nnred |
|
70 |
69
|
leidd |
|
71 |
|
facdiv |
|
72 |
56 3 70 71
|
syl3anc |
|
73 |
72
|
nnzd |
|
74 |
2 73
|
zmulcld |
|
75 |
68 74
|
eqeltrd |
|
76 |
5 58 20
|
fsummulc2 |
|
77 |
6
|
adantl |
|
78 |
77 30
|
syl |
|
79 |
78
|
oveq2d |
|
80 |
58
|
adantr |
|
81 |
6 33
|
sylan2 |
|
82 |
81
|
nncnd |
|
83 |
|
facne0 |
|
84 |
77 83
|
syl |
|
85 |
80 82 84
|
divrecd |
|
86 |
79 85
|
eqtr4d |
|
87 |
|
permnn |
|
88 |
87
|
adantl |
|
89 |
86 88
|
eqeltrd |
|
90 |
89
|
nnzd |
|
91 |
5 90
|
fsumzcl |
|
92 |
76 91
|
eqeltrd |
|
93 |
75 92
|
zsubcld |
|
94 |
63 93
|
eqeltrd |
|
95 |
|
0zd |
|
96 |
57
|
nnrpd |
|
97 |
96 39
|
rpmulcld |
|
98 |
97
|
rpgt0d |
|
99 |
24
|
peano2nnd |
|
100 |
99
|
nnred |
|
101 |
25
|
faccld |
|
102 |
101 24
|
nnmulcld |
|
103 |
100 102
|
nndivred |
|
104 |
57
|
nnrecred |
|
105 |
|
abs1 |
|
106 |
105
|
oveq1i |
|
107 |
106
|
oveq1i |
|
108 |
107
|
mpteq2i |
|
109 |
12 108
|
eqtr4i |
|
110 |
|
eqid |
|
111 |
|
1le1 |
|
112 |
105 111
|
eqbrtri |
|
113 |
112
|
a1i |
|
114 |
12 109 110 24 16 113
|
eftlub |
|
115 |
39
|
rprege0d |
|
116 |
|
absid |
|
117 |
115 116
|
syl |
|
118 |
105
|
oveq1i |
|
119 |
24
|
nnzd |
|
120 |
|
1exp |
|
121 |
119 120
|
syl |
|
122 |
118 121
|
eqtrid |
|
123 |
122
|
oveq1d |
|
124 |
103
|
recnd |
|
125 |
124
|
mulid2d |
|
126 |
123 125
|
eqtrd |
|
127 |
114 117 126
|
3brtr3d |
|
128 |
24
|
nnred |
|
129 |
128 128
|
readdcld |
|
130 |
128 128
|
remulcld |
|
131 |
|
1red |
|
132 |
3
|
nnge1d |
|
133 |
|
1nn |
|
134 |
|
nnleltp1 |
|
135 |
133 3 134
|
sylancr |
|
136 |
132 135
|
mpbid |
|
137 |
131 128 128 136
|
ltadd2dd |
|
138 |
24
|
nncnd |
|
139 |
138
|
2timesd |
|
140 |
|
df-2 |
|
141 |
131 69 131 132
|
leadd1dd |
|
142 |
140 141
|
eqbrtrid |
|
143 |
|
2re |
|
144 |
143
|
a1i |
|
145 |
24
|
nngt0d |
|
146 |
|
lemul1 |
|
147 |
144 128 128 145 146
|
syl112anc |
|
148 |
142 147
|
mpbid |
|
149 |
139 148
|
eqbrtrrd |
|
150 |
100 129 130 137 149
|
ltletrd |
|
151 |
|
facp1 |
|
152 |
56 151
|
syl |
|
153 |
152
|
oveq1d |
|
154 |
101
|
nncnd |
|
155 |
57
|
nnne0d |
|
156 |
154 58 155
|
divrecd |
|
157 |
138 58 155
|
divcan3d |
|
158 |
153 156 157
|
3eqtr3rd |
|
159 |
158
|
oveq1d |
|
160 |
104
|
recnd |
|
161 |
154 160 138
|
mul32d |
|
162 |
159 161
|
eqtrd |
|
163 |
150 162
|
breqtrd |
|
164 |
102
|
nnred |
|
165 |
102
|
nngt0d |
|
166 |
|
ltdivmul |
|
167 |
100 104 164 165 166
|
syl112anc |
|
168 |
163 167
|
mpbird |
|
169 |
40 103 104 127 168
|
lelttrd |
|
170 |
40 131 96
|
ltmuldiv2d |
|
171 |
169 170
|
mpbird |
|
172 |
|
0p1e1 |
|
173 |
171 172
|
breqtrrdi |
|
174 |
|
btwnnz |
|
175 |
95 98 173 174
|
syl3anc |
|
176 |
94 175
|
pm2.65i |
|