Metamath Proof Explorer


Theorem el

Description: Every set is an element of some other set. See elALT for a shorter proof using more axioms, and see elALT2 for a proof that uses ax-9 and ax-pow instead of ax-pr . (Contributed by NM, 4-Jan-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011) Avoid ax-9 , ax-pow . (Revised by BTernaryTau, 2-Dec-2024)

Ref Expression
Assertion el y x y

Proof

Step Hyp Ref Expression
1 ax-pr y z z = x z = x z y
2 pm4.25 z = x z = x z = x
3 2 imbi1i z = x z y z = x z = x z y
4 3 albii z z = x z y z z = x z = x z y
5 elequ1 z = x z y x y
6 5 equsalvw z z = x z y x y
7 4 6 bitr3i z z = x z = x z y x y
8 7 exbii y z z = x z = x z y y x y
9 1 8 mpbi y x y