Description: Every set is an element of some other set. See elALT for a shorter proof using more axioms. (Contributed by NM, 4-Jan-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | el |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpow | ||
2 | ax9 | ||
3 | 2 | alrimiv | |
4 | ax8 | ||
5 | 3 4 | embantd | |
6 | 5 | spimvw | |
7 | 1 6 | eximii |