Metamath Proof Explorer


Theorem el021old

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el021old.1 φ
el021old.2 ψ χ θ
el021old.3 φ θ τ
Assertion el021old ψ χ τ

Proof

Step Hyp Ref Expression
1 el021old.1 φ
2 el021old.2 ψ χ θ
3 el021old.3 φ θ τ
4 2 dfvd2ani ψ χ θ
5 1 4 3 sylancr ψ χ τ
6 5 dfvd2anir ψ χ τ