Metamath Proof Explorer


Theorem el0321old

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el0321old.1 φ
el0321old.2 ψ χ θ τ
el0321old.3 φ τ η
Assertion el0321old ψ χ θ η

Proof

Step Hyp Ref Expression
1 el0321old.1 φ
2 el0321old.2 ψ χ θ τ
3 el0321old.3 φ τ η
4 2 dfvd3ani ψ χ θ τ
5 1 4 3 eel0321old ψ χ θ η
6 5 dfvd3anir ψ χ θ η