Metamath Proof Explorer


Theorem el1fzopredsuc

Description: An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020)

Ref Expression
Assertion el1fzopredsuc N 0 I 0 N I = 0 I 1 ..^ N I = N

Proof

Step Hyp Ref Expression
1 elfzelz I 0 N I
2 1fzopredsuc N 0 0 N = 0 1 ..^ N N
3 2 eleq2d N 0 I 0 N I 0 1 ..^ N N
4 elun I 0 1 ..^ N N I 0 1 ..^ N I N
5 elun I 0 1 ..^ N I 0 I 1 ..^ N
6 5 orbi1i I 0 1 ..^ N I N I 0 I 1 ..^ N I N
7 4 6 bitri I 0 1 ..^ N N I 0 I 1 ..^ N I N
8 elsng I I 0 I = 0
9 8 adantl N 0 I I 0 I = 0
10 9 orbi1d N 0 I I 0 I 1 ..^ N I = 0 I 1 ..^ N
11 elsng I I N I = N
12 11 adantl N 0 I I N I = N
13 10 12 orbi12d N 0 I I 0 I 1 ..^ N I N I = 0 I 1 ..^ N I = N
14 7 13 syl5bb N 0 I I 0 1 ..^ N N I = 0 I 1 ..^ N I = N
15 df-3or I = 0 I 1 ..^ N I = N I = 0 I 1 ..^ N I = N
16 15 biimpri I = 0 I 1 ..^ N I = N I = 0 I 1 ..^ N I = N
17 14 16 syl6bi N 0 I I 0 1 ..^ N N I = 0 I 1 ..^ N I = N
18 17 ex N 0 I I 0 1 ..^ N N I = 0 I 1 ..^ N I = N
19 18 com23 N 0 I 0 1 ..^ N N I I = 0 I 1 ..^ N I = N
20 3 19 sylbid N 0 I 0 N I I = 0 I 1 ..^ N I = N
21 1 20 mpdi N 0 I 0 N I = 0 I 1 ..^ N I = N
22 c0ex 0 V
23 22 snid 0 0
24 23 a1i I = 0 0 0
25 eleq1 I = 0 I 0 0 0
26 24 25 mpbird I = 0 I 0
27 26 a1i N 0 I = 0 I 0
28 idd N 0 I 1 ..^ N I 1 ..^ N
29 snidg N 0 N N
30 eleq1 I = N I N N N
31 29 30 syl5ibrcom N 0 I = N I N
32 27 28 31 3orim123d N 0 I = 0 I 1 ..^ N I = N I 0 I 1 ..^ N I N
33 32 imp N 0 I = 0 I 1 ..^ N I = N I 0 I 1 ..^ N I N
34 df-3or I 0 I 1 ..^ N I N I 0 I 1 ..^ N I N
35 33 34 sylib N 0 I = 0 I 1 ..^ N I = N I 0 I 1 ..^ N I N
36 35 7 sylibr N 0 I = 0 I 1 ..^ N I = N I 0 1 ..^ N N
37 3 adantr N 0 I = 0 I 1 ..^ N I = N I 0 N I 0 1 ..^ N N
38 36 37 mpbird N 0 I = 0 I 1 ..^ N I = N I 0 N
39 38 ex N 0 I = 0 I 1 ..^ N I = N I 0 N
40 21 39 impbid N 0 I 0 N I = 0 I 1 ..^ N I = N