Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
el1o
Next ⟩
dif1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
el1o
Description:
Membership in ordinal one.
(Contributed by
NM
, 5-Jan-2005)
Ref
Expression
Assertion
el1o
⊢
A
∈
1
𝑜
↔
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
df1o2
⊢
1
𝑜
=
∅
2
1
eleq2i
⊢
A
∈
1
𝑜
↔
A
∈
∅
3
0ex
⊢
∅
∈
V
4
3
elsn2
⊢
A
∈
∅
↔
A
=
∅
5
2
4
bitri
⊢
A
∈
1
𝑜
↔
A
=
∅