Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
el2122old
Metamath Proof Explorer
Description: A virtual deduction elimination rule. (Contributed by Alan Sare , 13-Jun-2015) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
el2122old.1
⊢ φ ψ → χ
el2122old.2
⊢ ψ → θ
el2122old.3
⊢ ψ → τ
el2122old.4
⊢ χ ∧ θ ∧ τ → η
Assertion
el2122old
⊢ φ ψ → η
Proof
Step
Hyp
Ref
Expression
1
el2122old.1
⊢ φ ψ → χ
2
el2122old.2
⊢ ψ → θ
3
el2122old.3
⊢ ψ → τ
4
el2122old.4
⊢ χ ∧ θ ∧ τ → η
5
1
dfvd2ani
⊢ φ ∧ ψ → χ
6
2
in1
⊢ ψ → θ
7
3
in1
⊢ ψ → τ
8
5 6 7 4
eel2122old
⊢ φ ∧ ψ → η
9
8
dfvd2anir
⊢ φ ψ → η