Metamath Proof Explorer


Theorem el2122old

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el2122old.1 φ ψ χ
el2122old.2 ψ θ
el2122old.3 ψ τ
el2122old.4 χ θ τ η
Assertion el2122old φ ψ η

Proof

Step Hyp Ref Expression
1 el2122old.1 φ ψ χ
2 el2122old.2 ψ θ
3 el2122old.3 ψ τ
4 el2122old.4 χ θ τ η
5 1 dfvd2ani φ ψ χ
6 2 in1 ψ θ
7 3 in1 ψ τ
8 5 6 7 4 eel2122old φ ψ η
9 8 dfvd2anir φ ψ η