Metamath Proof Explorer


Theorem el2xptp

Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018)

Ref Expression
Assertion el2xptp A B × C × D x B y C z D A = x y z

Proof

Step Hyp Ref Expression
1 elxp2 A B × C × D p B × C z D A = p z
2 opeq1 p = x y p z = x y z
3 2 eqeq2d p = x y A = p z A = x y z
4 3 rexbidv p = x y z D A = p z z D A = x y z
5 4 rexxp p B × C z D A = p z x B y C z D A = x y z
6 df-ot x y z = x y z
7 6 eqcomi x y z = x y z
8 7 eqeq2i A = x y z A = x y z
9 8 rexbii z D A = x y z z D A = x y z
10 9 rexbii y C z D A = x y z y C z D A = x y z
11 10 rexbii x B y C z D A = x y z x B y C z D A = x y z
12 1 5 11 3bitri A B × C × D x B y C z D A = x y z