Metamath Proof Explorer


Theorem elALT

Description: Alternate proof of el , shorter but requiring more axioms. (Contributed by NM, 4-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elALT y x y

Proof

Step Hyp Ref Expression
1 vex x V
2 1 snid x x
3 snex x V
4 eleq2 y = x x y x x
5 3 4 spcev x x y x y
6 2 5 ax-mp y x y