Metamath Proof Explorer


Theorem elaa

Description: Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion elaa A 𝔸 A f Poly 0 𝑝 f A = 0

Proof

Step Hyp Ref Expression
1 df-aa 𝔸 = f Poly 0 𝑝 f -1 0
2 1 eleq2i A 𝔸 A f Poly 0 𝑝 f -1 0
3 eliun A f Poly 0 𝑝 f -1 0 f Poly 0 𝑝 A f -1 0
4 eldifi f Poly 0 𝑝 f Poly
5 plyf f Poly f :
6 ffn f : f Fn
7 fniniseg f Fn A f -1 0 A f A = 0
8 4 5 6 7 4syl f Poly 0 𝑝 A f -1 0 A f A = 0
9 8 rexbiia f Poly 0 𝑝 A f -1 0 f Poly 0 𝑝 A f A = 0
10 r19.42v f Poly 0 𝑝 A f A = 0 A f Poly 0 𝑝 f A = 0
11 9 10 bitri f Poly 0 𝑝 A f -1 0 A f Poly 0 𝑝 f A = 0
12 3 11 bitri A f Poly 0 𝑝 f -1 0 A f Poly 0 𝑝 f A = 0
13 2 12 bitri A 𝔸 A f Poly 0 𝑝 f A = 0