Step |
Hyp |
Ref |
Expression |
1 |
|
aasscn |
|
2 |
|
eldifi |
|
3 |
1 2
|
sselid |
|
4 |
|
elaa |
|
5 |
2 4
|
sylib |
|
6 |
5
|
simprd |
|
7 |
2
|
3ad2ant1 |
|
8 |
|
eldifsni |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
eldifi |
|
11 |
10
|
3ad2ant2 |
|
12 |
|
eldifsni |
|
13 |
12
|
3ad2ant2 |
|
14 |
|
simp3 |
|
15 |
|
fveq2 |
|
16 |
15
|
neeq1d |
|
17 |
16
|
cbvrabv |
|
18 |
17
|
infeq1i |
|
19 |
|
fvoveq1 |
|
20 |
19
|
cbvmptv |
|
21 |
|
eqid |
|
22 |
7 9 11 13 14 18 20 21
|
elaa2lem |
|
23 |
22
|
rexlimdv3a |
|
24 |
6 23
|
mpd |
|
25 |
3 24
|
jca |
|
26 |
|
simpl |
|
27 |
|
fveq2 |
|
28 |
|
coe0 |
|
29 |
27 28
|
eqtrdi |
|
30 |
29
|
fveq1d |
|
31 |
|
0nn0 |
|
32 |
|
fvconst2g |
|
33 |
31 31 32
|
mp2an |
|
34 |
30 33
|
eqtrdi |
|
35 |
34
|
adantl |
|
36 |
|
neneq |
|
37 |
36
|
ad2antlr |
|
38 |
35 37
|
pm2.65da |
|
39 |
|
velsn |
|
40 |
38 39
|
sylnibr |
|
41 |
26 40
|
eldifd |
|
42 |
41
|
adantrr |
|
43 |
|
simprr |
|
44 |
42 43
|
jca |
|
45 |
44
|
reximi2 |
|
46 |
45
|
anim2i |
|
47 |
|
elaa |
|
48 |
46 47
|
sylibr |
|
49 |
|
simpr |
|
50 |
|
nfv |
|
51 |
|
nfre1 |
|
52 |
50 51
|
nfan |
|
53 |
|
nfv |
|
54 |
|
simpl3r |
|
55 |
|
fveq2 |
|
56 |
|
eqid |
|
57 |
56
|
coefv0 |
|
58 |
55 57
|
sylan9eqr |
|
59 |
58
|
adantlr |
|
60 |
|
simplr |
|
61 |
59 60
|
eqnetrd |
|
62 |
61
|
neneqd |
|
63 |
62
|
adantlrr |
|
64 |
63
|
3adantl1 |
|
65 |
54 64
|
pm2.65da |
|
66 |
|
elsng |
|
67 |
66
|
biimpa |
|
68 |
67
|
3ad2antl1 |
|
69 |
65 68
|
mtand |
|
70 |
69
|
3exp |
|
71 |
70
|
adantr |
|
72 |
52 53 71
|
rexlimd |
|
73 |
49 72
|
mpd |
|
74 |
48 73
|
eldifd |
|
75 |
25 74
|
impbii |
|