| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aasscn |  | 
						
							| 2 |  | eldifi |  | 
						
							| 3 | 1 2 | sselid |  | 
						
							| 4 |  | elaa |  | 
						
							| 5 | 2 4 | sylib |  | 
						
							| 6 | 5 | simprd |  | 
						
							| 7 | 2 | 3ad2ant1 |  | 
						
							| 8 |  | eldifsni |  | 
						
							| 9 | 8 | 3ad2ant1 |  | 
						
							| 10 |  | eldifi |  | 
						
							| 11 | 10 | 3ad2ant2 |  | 
						
							| 12 |  | eldifsni |  | 
						
							| 13 | 12 | 3ad2ant2 |  | 
						
							| 14 |  | simp3 |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 | 15 | neeq1d |  | 
						
							| 17 | 16 | cbvrabv |  | 
						
							| 18 | 17 | infeq1i |  | 
						
							| 19 |  | fvoveq1 |  | 
						
							| 20 | 19 | cbvmptv |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 7 9 11 13 14 18 20 21 | elaa2lem |  | 
						
							| 23 | 22 | rexlimdv3a |  | 
						
							| 24 | 6 23 | mpd |  | 
						
							| 25 | 3 24 | jca |  | 
						
							| 26 |  | simpl |  | 
						
							| 27 |  | fveq2 |  | 
						
							| 28 |  | coe0 |  | 
						
							| 29 | 27 28 | eqtrdi |  | 
						
							| 30 | 29 | fveq1d |  | 
						
							| 31 |  | 0nn0 |  | 
						
							| 32 |  | fvconst2g |  | 
						
							| 33 | 31 31 32 | mp2an |  | 
						
							| 34 | 30 33 | eqtrdi |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 |  | neneq |  | 
						
							| 37 | 36 | ad2antlr |  | 
						
							| 38 | 35 37 | pm2.65da |  | 
						
							| 39 |  | velsn |  | 
						
							| 40 | 38 39 | sylnibr |  | 
						
							| 41 | 26 40 | eldifd |  | 
						
							| 42 | 41 | adantrr |  | 
						
							| 43 |  | simprr |  | 
						
							| 44 | 42 43 | jca |  | 
						
							| 45 | 44 | reximi2 |  | 
						
							| 46 | 45 | anim2i |  | 
						
							| 47 |  | elaa |  | 
						
							| 48 | 46 47 | sylibr |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 |  | nfv |  | 
						
							| 51 |  | nfre1 |  | 
						
							| 52 | 50 51 | nfan |  | 
						
							| 53 |  | nfv |  | 
						
							| 54 |  | simpl3r |  | 
						
							| 55 |  | fveq2 |  | 
						
							| 56 |  | eqid |  | 
						
							| 57 | 56 | coefv0 |  | 
						
							| 58 | 55 57 | sylan9eqr |  | 
						
							| 59 | 58 | adantlr |  | 
						
							| 60 |  | simplr |  | 
						
							| 61 | 59 60 | eqnetrd |  | 
						
							| 62 | 61 | neneqd |  | 
						
							| 63 | 62 | adantlrr |  | 
						
							| 64 | 63 | 3adantl1 |  | 
						
							| 65 | 54 64 | pm2.65da |  | 
						
							| 66 |  | elsng |  | 
						
							| 67 | 66 | biimpa |  | 
						
							| 68 | 67 | 3ad2antl1 |  | 
						
							| 69 | 65 68 | mtand |  | 
						
							| 70 | 69 | 3exp |  | 
						
							| 71 | 70 | adantr |  | 
						
							| 72 | 52 53 71 | rexlimd |  | 
						
							| 73 | 49 72 | mpd |  | 
						
							| 74 | 48 73 | eldifd |  | 
						
							| 75 | 25 74 | impbii |  |