| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aasscn |
|
| 2 |
|
eldifi |
|
| 3 |
1 2
|
sselid |
|
| 4 |
|
elaa |
|
| 5 |
2 4
|
sylib |
|
| 6 |
5
|
simprd |
|
| 7 |
2
|
3ad2ant1 |
|
| 8 |
|
eldifsni |
|
| 9 |
8
|
3ad2ant1 |
|
| 10 |
|
eldifi |
|
| 11 |
10
|
3ad2ant2 |
|
| 12 |
|
eldifsni |
|
| 13 |
12
|
3ad2ant2 |
|
| 14 |
|
simp3 |
|
| 15 |
|
fveq2 |
|
| 16 |
15
|
neeq1d |
|
| 17 |
16
|
cbvrabv |
|
| 18 |
17
|
infeq1i |
|
| 19 |
|
fvoveq1 |
|
| 20 |
19
|
cbvmptv |
|
| 21 |
|
eqid |
|
| 22 |
7 9 11 13 14 18 20 21
|
elaa2lem |
|
| 23 |
22
|
rexlimdv3a |
|
| 24 |
6 23
|
mpd |
|
| 25 |
3 24
|
jca |
|
| 26 |
|
simpl |
|
| 27 |
|
fveq2 |
|
| 28 |
|
coe0 |
|
| 29 |
27 28
|
eqtrdi |
|
| 30 |
29
|
fveq1d |
|
| 31 |
|
0nn0 |
|
| 32 |
|
fvconst2g |
|
| 33 |
31 31 32
|
mp2an |
|
| 34 |
30 33
|
eqtrdi |
|
| 35 |
34
|
adantl |
|
| 36 |
|
neneq |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
35 37
|
pm2.65da |
|
| 39 |
|
velsn |
|
| 40 |
38 39
|
sylnibr |
|
| 41 |
26 40
|
eldifd |
|
| 42 |
41
|
adantrr |
|
| 43 |
|
simprr |
|
| 44 |
42 43
|
jca |
|
| 45 |
44
|
reximi2 |
|
| 46 |
45
|
anim2i |
|
| 47 |
|
elaa |
|
| 48 |
46 47
|
sylibr |
|
| 49 |
|
simpr |
|
| 50 |
|
nfv |
|
| 51 |
|
nfre1 |
|
| 52 |
50 51
|
nfan |
|
| 53 |
|
nfv |
|
| 54 |
|
simpl3r |
|
| 55 |
|
fveq2 |
|
| 56 |
|
eqid |
|
| 57 |
56
|
coefv0 |
|
| 58 |
55 57
|
sylan9eqr |
|
| 59 |
58
|
adantlr |
|
| 60 |
|
simplr |
|
| 61 |
59 60
|
eqnetrd |
|
| 62 |
61
|
neneqd |
|
| 63 |
62
|
adantlrr |
|
| 64 |
63
|
3adantl1 |
|
| 65 |
54 64
|
pm2.65da |
|
| 66 |
|
elsng |
|
| 67 |
66
|
biimpa |
|
| 68 |
67
|
3ad2antl1 |
|
| 69 |
65 68
|
mtand |
|
| 70 |
69
|
3exp |
|
| 71 |
70
|
adantr |
|
| 72 |
52 53 71
|
rexlimd |
|
| 73 |
49 72
|
mpd |
|
| 74 |
48 73
|
eldifd |
|
| 75 |
25 74
|
impbii |
|