Step |
Hyp |
Ref |
Expression |
1 |
|
elaa2lem.a |
|
2 |
|
elaa2lem.an0 |
|
3 |
|
elaa2lem.g |
|
4 |
|
elaa2lem.gn0 |
|
5 |
|
elaa2lem.ga |
|
6 |
|
elaa2lem.m |
|
7 |
|
elaa2lem.i |
|
8 |
|
elaa2lem.f |
|
9 |
8
|
a1i |
|
10 |
|
zsscn |
|
11 |
10
|
a1i |
|
12 |
|
dgrcl |
|
13 |
3 12
|
syl |
|
14 |
13
|
nn0zd |
|
15 |
|
ssrab2 |
|
16 |
|
nn0uz |
|
17 |
15 16
|
sseqtri |
|
18 |
17
|
a1i |
|
19 |
4
|
neneqd |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
20 21
|
dgreq0 |
|
23 |
3 22
|
syl |
|
24 |
19 23
|
mtbid |
|
25 |
24
|
neqned |
|
26 |
13 25
|
jca |
|
27 |
|
fveq2 |
|
28 |
27
|
neeq1d |
|
29 |
28
|
elrab |
|
30 |
26 29
|
sylibr |
|
31 |
30
|
ne0d |
|
32 |
|
infssuzcl |
|
33 |
18 31 32
|
syl2anc |
|
34 |
15 33
|
sselid |
|
35 |
6 34
|
eqeltrid |
|
36 |
35
|
nn0zd |
|
37 |
14 36
|
zsubcld |
|
38 |
6
|
a1i |
|
39 |
|
infssuzle |
|
40 |
18 30 39
|
syl2anc |
|
41 |
38 40
|
eqbrtrd |
|
42 |
13
|
nn0red |
|
43 |
35
|
nn0red |
|
44 |
42 43
|
subge0d |
|
45 |
41 44
|
mpbird |
|
46 |
37 45
|
jca |
|
47 |
|
elnn0z |
|
48 |
46 47
|
sylibr |
|
49 |
|
0zd |
|
50 |
21
|
coef2 |
|
51 |
3 49 50
|
syl2anc2 |
|
52 |
51
|
adantr |
|
53 |
|
simpr |
|
54 |
35
|
adantr |
|
55 |
53 54
|
nn0addcld |
|
56 |
52 55
|
ffvelrnd |
|
57 |
56 7
|
fmptd |
|
58 |
|
elplyr |
|
59 |
11 48 57 58
|
syl3anc |
|
60 |
9 59
|
eqeltrd |
|
61 |
|
simpr |
|
62 |
61
|
iftrued |
|
63 |
|
iffalse |
|
64 |
63
|
adantl |
|
65 |
|
simpr |
|
66 |
42
|
ad2antrr |
|
67 |
43
|
ad2antrr |
|
68 |
66 67
|
resubcld |
|
69 |
|
nn0re |
|
70 |
69
|
ad2antlr |
|
71 |
68 70
|
ltnled |
|
72 |
65 71
|
mpbird |
|
73 |
66 67 70
|
ltsubaddd |
|
74 |
72 73
|
mpbid |
|
75 |
|
olc |
|
76 |
74 75
|
syl |
|
77 |
3
|
ad2antrr |
|
78 |
55
|
adantr |
|
79 |
20 21
|
dgrlt |
|
80 |
77 78 79
|
syl2anc |
|
81 |
76 80
|
mpbid |
|
82 |
81
|
simprd |
|
83 |
64 82
|
eqtr4d |
|
84 |
62 83
|
pm2.61dan |
|
85 |
84
|
mpteq2dva |
|
86 |
51 11
|
fssd |
|
87 |
86
|
adantr |
|
88 |
|
elfznn0 |
|
89 |
88
|
adantl |
|
90 |
35
|
adantr |
|
91 |
89 90
|
nn0addcld |
|
92 |
87 91
|
ffvelrnd |
|
93 |
|
eqidd |
|
94 |
|
simpl |
|
95 |
7
|
a1i |
|
96 |
95 56
|
fvmpt2d |
|
97 |
94 89 96
|
syl2anc |
|
98 |
97
|
adantlr |
|
99 |
98
|
oveq1d |
|
100 |
93 99
|
sumeq12rdv |
|
101 |
100
|
mpteq2dva |
|
102 |
9 101
|
eqtrd |
|
103 |
60 48 92 102
|
coeeq2 |
|
104 |
85 103 95
|
3eqtr4d |
|
105 |
104
|
fveq1d |
|
106 |
|
oveq1 |
|
107 |
106
|
adantl |
|
108 |
10 36
|
sselid |
|
109 |
108
|
addid2d |
|
110 |
109
|
adantr |
|
111 |
107 110
|
eqtrd |
|
112 |
111
|
fveq2d |
|
113 |
|
0nn0 |
|
114 |
113
|
a1i |
|
115 |
51 35
|
ffvelrnd |
|
116 |
95 112 114 115
|
fvmptd |
|
117 |
|
eqidd |
|
118 |
105 116 117
|
3eqtrd |
|
119 |
38 33
|
eqeltrd |
|
120 |
|
fveq2 |
|
121 |
120
|
neeq1d |
|
122 |
121
|
elrab |
|
123 |
119 122
|
sylib |
|
124 |
123
|
simprd |
|
125 |
118 124
|
eqnetrd |
|
126 |
3 49
|
syl |
|
127 |
|
aasscn |
|
128 |
127 1
|
sselid |
|
129 |
94 128
|
syl |
|
130 |
129 89
|
expcld |
|
131 |
92 130
|
mulcld |
|
132 |
|
fvoveq1 |
|
133 |
|
oveq2 |
|
134 |
132 133
|
oveq12d |
|
135 |
36 126 37 131 134
|
fsumshft |
|
136 |
10 14
|
sselid |
|
137 |
136 108
|
npcand |
|
138 |
109 137
|
oveq12d |
|
139 |
138
|
sumeq1d |
|
140 |
|
elfzelz |
|
141 |
140
|
adantl |
|
142 |
10 141
|
sselid |
|
143 |
108
|
adantr |
|
144 |
142 143
|
npcand |
|
145 |
144
|
fveq2d |
|
146 |
145
|
oveq1d |
|
147 |
128
|
adantr |
|
148 |
2
|
adantr |
|
149 |
36
|
adantr |
|
150 |
147 148 149 141
|
expsubd |
|
151 |
150
|
oveq2d |
|
152 |
86
|
adantr |
|
153 |
|
0red |
|
154 |
43
|
adantr |
|
155 |
141
|
zred |
|
156 |
35
|
nn0ge0d |
|
157 |
156
|
adantr |
|
158 |
|
elfzle1 |
|
159 |
158
|
adantl |
|
160 |
153 154 155 157 159
|
letrd |
|
161 |
141 160
|
jca |
|
162 |
|
elnn0z |
|
163 |
161 162
|
sylibr |
|
164 |
152 163
|
ffvelrnd |
|
165 |
147 163
|
expcld |
|
166 |
128 35
|
expcld |
|
167 |
166
|
adantr |
|
168 |
147 148 149
|
expne0d |
|
169 |
164 165 167 168
|
divassd |
|
170 |
169
|
eqcomd |
|
171 |
151 170
|
eqtr2d |
|
172 |
146 171
|
eqtr4d |
|
173 |
172
|
sumeq2dv |
|
174 |
139 173
|
eqtrd |
|
175 |
35 16
|
eleqtrdi |
|
176 |
|
fzss1 |
|
177 |
175 176
|
syl |
|
178 |
164 165
|
mulcld |
|
179 |
178 167 168
|
divcld |
|
180 |
36
|
ad2antrr |
|
181 |
14
|
ad2antrr |
|
182 |
|
eldifi |
|
183 |
182
|
elfzelzd |
|
184 |
183
|
ad2antlr |
|
185 |
|
simpr |
|
186 |
43
|
ad2antrr |
|
187 |
184
|
zred |
|
188 |
186 187
|
lenltd |
|
189 |
185 188
|
mpbird |
|
190 |
|
elfzle2 |
|
191 |
182 190
|
syl |
|
192 |
191
|
ad2antlr |
|
193 |
180 181 184 189 192
|
elfzd |
|
194 |
|
eldifn |
|
195 |
194
|
ad2antlr |
|
196 |
193 195
|
condan |
|
197 |
196
|
adantr |
|
198 |
6
|
a1i |
|
199 |
17
|
a1i |
|
200 |
|
elfznn0 |
|
201 |
182 200
|
syl |
|
202 |
201
|
adantr |
|
203 |
|
neqne |
|
204 |
203
|
adantl |
|
205 |
202 204
|
jca |
|
206 |
|
fveq2 |
|
207 |
206
|
neeq1d |
|
208 |
207
|
elrab |
|
209 |
205 208
|
sylibr |
|
210 |
209
|
adantll |
|
211 |
|
infssuzle |
|
212 |
199 210 211
|
syl2anc |
|
213 |
198 212
|
eqbrtrd |
|
214 |
43
|
ad2antrr |
|
215 |
183
|
zred |
|
216 |
215
|
ad2antlr |
|
217 |
214 216
|
lenltd |
|
218 |
213 217
|
mpbid |
|
219 |
197 218
|
condan |
|
220 |
219
|
oveq1d |
|
221 |
128
|
adantr |
|
222 |
201
|
adantl |
|
223 |
221 222
|
expcld |
|
224 |
223
|
mul02d |
|
225 |
220 224
|
eqtrd |
|
226 |
225
|
oveq1d |
|
227 |
128 2 36
|
expne0d |
|
228 |
166 227
|
div0d |
|
229 |
228
|
adantr |
|
230 |
226 229
|
eqtrd |
|
231 |
|
fzfid |
|
232 |
177 179 230 231
|
fsumss |
|
233 |
135 174 232
|
3eqtrd |
|
234 |
89 56
|
syldan |
|
235 |
7
|
fvmpt2 |
|
236 |
89 234 235
|
syl2anc |
|
237 |
236
|
adantlr |
|
238 |
|
oveq1 |
|
239 |
238
|
ad2antlr |
|
240 |
237 239
|
oveq12d |
|
241 |
240
|
sumeq2dv |
|
242 |
|
fzfid |
|
243 |
242 131
|
fsumcl |
|
244 |
9 241 128 243
|
fvmptd |
|
245 |
21 20
|
coeid2 |
|
246 |
3 128 245
|
syl2anc |
|
247 |
246
|
oveq1d |
|
248 |
86
|
adantr |
|
249 |
200
|
adantl |
|
250 |
248 249
|
ffvelrnd |
|
251 |
128
|
adantr |
|
252 |
251 249
|
expcld |
|
253 |
250 252
|
mulcld |
|
254 |
231 166 253 227
|
fsumdivc |
|
255 |
247 254
|
eqtrd |
|
256 |
233 244 255
|
3eqtr4d |
|
257 |
5
|
oveq1d |
|
258 |
256 257 228
|
3eqtrd |
|
259 |
125 258
|
jca |
|
260 |
|
fveq2 |
|
261 |
260
|
fveq1d |
|
262 |
261
|
neeq1d |
|
263 |
|
fveq1 |
|
264 |
263
|
eqeq1d |
|
265 |
262 264
|
anbi12d |
|
266 |
265
|
rspcev |
|
267 |
60 259 266
|
syl2anc |
|