Metamath Proof Explorer


Theorem elab

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 1-Aug-1994) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Oct-2024)

Ref Expression
Hypotheses elab.1 A V
elab.2 x = A φ ψ
Assertion elab A x | φ ψ

Proof

Step Hyp Ref Expression
1 elab.1 A V
2 elab.2 x = A φ ψ
3 2 elabg A V A x | φ ψ
4 1 3 ax-mp A x | φ ψ