Metamath Proof Explorer


Theorem elab2

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995)

Ref Expression
Hypotheses elab2.1 A V
elab2.2 x = A φ ψ
elab2.3 B = x | φ
Assertion elab2 A B ψ

Proof

Step Hyp Ref Expression
1 elab2.1 A V
2 elab2.2 x = A φ ψ
3 elab2.3 B = x | φ
4 2 3 elab2g A V A B ψ
5 1 4 ax-mp A B ψ