Metamath Proof Explorer


Theorem elab3g

Description: Membership in a class abstraction, with a weaker antecedent than elabg . (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypothesis elab3g.1 x = A φ ψ
Assertion elab3g ψ A B A x | φ ψ

Proof

Step Hyp Ref Expression
1 elab3g.1 x = A φ ψ
2 1 elabg A x | φ A x | φ ψ
3 2 ibi A x | φ ψ
4 pm2.21 ¬ ψ ψ A x | φ
5 3 4 impbid2 ¬ ψ A x | φ ψ
6 1 elabg A B A x | φ ψ
7 5 6 ja ψ A B A x | φ ψ