Metamath Proof Explorer


Theorem elab3gf

Description: Membership in a class abstraction, with a weaker antecedent than elabgf . (Contributed by NM, 6-Sep-2011)

Ref Expression
Hypotheses elab3gf.1 _ x A
elab3gf.2 x ψ
elab3gf.3 x = A φ ψ
Assertion elab3gf ψ A B A x | φ ψ

Proof

Step Hyp Ref Expression
1 elab3gf.1 _ x A
2 elab3gf.2 x ψ
3 elab3gf.3 x = A φ ψ
4 1 2 3 elabgf A x | φ A x | φ ψ
5 4 ibi A x | φ ψ
6 pm2.21 ¬ ψ ψ A x | φ
7 5 6 impbid2 ¬ ψ A x | φ ψ
8 1 2 3 elabgf A B A x | φ ψ
9 7 8 ja ψ A B A x | φ ψ