Metamath Proof Explorer


Theorem elab4g

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012)

Ref Expression
Hypotheses elab4g.1 x = A φ ψ
elab4g.2 B = x | φ
Assertion elab4g A B A V ψ

Proof

Step Hyp Ref Expression
1 elab4g.1 x = A φ ψ
2 elab4g.2 B = x | φ
3 elex A B A V
4 1 2 elab2g A V A B ψ
5 3 4 biadanii A B A V ψ