Metamath Proof Explorer
Description: Membership in a class abstraction, using implicit substitution.
(Contributed by NM, 17-Oct-2012)
|
|
Ref |
Expression |
|
Hypotheses |
elab4g.1 |
|
|
|
elab4g.2 |
|
|
Assertion |
elab4g |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elab4g.1 |
|
2 |
|
elab4g.2 |
|
3 |
|
elex |
|
4 |
1 2
|
elab2g |
|
5 |
3 4
|
biadanii |
|