Metamath Proof Explorer


Theorem elab6g

Description: Membership in a class abstraction. Class version of sb6 . (Contributed by SN, 5-Oct-2024)

Ref Expression
Assertion elab6g A V A x | φ x x = A φ

Proof

Step Hyp Ref Expression
1 eleq1 y = A y x | φ A x | φ
2 eqeq2 y = A x = y x = A
3 2 imbi1d y = A x = y φ x = A φ
4 3 albidv y = A x x = y φ x x = A φ
5 df-clab y x | φ y x φ
6 sb6 y x φ x x = y φ
7 5 6 bitri y x | φ x x = y φ
8 1 4 7 vtoclbg A V A x | φ x x = A φ